
coreemu-lab: An Automated Network
Emulation and Evaluation Environment

Lars Baumgärtner∗, Tobias Meuser†, Bastian Bloessl∗

Technical University of Darmstadt, D-64289 Darmstadt, Germany
∗FB 20, E-mail: {baumgaertner, bloessl}@cs.tu-darmstadt.de

†Multimedia Communications Lab, FB 18, E-mail: {tobias.meuser}@kom.tu-darmstadt.de

Abstract—Developing new solutions for challenging communi-
cation environments requires extensive testing in various different
scenarios. While discrete-event network simulators scale well,
their main use is in evaluating specific algorithms and not
necessarily assessing the real-world performance of an actual
application. In contrast, full network emulation is a costly but
more realistic way to perform an evaluation. These types of
evaluation provide more valuable insights for both developers and
users. Nevertheless, oftentimes the wheel is reinvented to provide
a newly written simulation environment for a specific networking
software or handwritten evaluation and reporting scripts for com-
mon metrics. Unfortunately, the downside of customized solutions
is potential oversights regarding important metrics, and later
finding out various problems when deploying the software in the
field. In this paper, we present coreemu-lab, a novel framework
that automates the process of orchestrating different monitoring
services in an emulated, lightweight networking environment.
This includes simulated mobility, automated data collection, and
analysis of common metrics. It is specifically designed for the
evaluation of resilient, decentralized communication software in
challenging, mobile scenarios. Our evaluation shows the flexibility
and ease of use of our proposed multi-platform, open-source
solution.

Index Terms—Network Simulation, Network Emulation, Auto-
mated Evaluation, Disruption-Tolerant Networking.

I. INTRODUCTION

Complex communication scenarios involving mobile nodes
at various speeds (e.g., pedestrians, UAVs, and cars) or
failing communication infrastructure during natural disasters
pose great challenges to networking software (Fig. 1). Thus,
thorough testing of such applications in various scenarios
is necessary. This is especially important for software that
should be used in emergency scenarios and networks such
as mesh and disruption-tolerant networking (DTN). There are
many different solutions to simulate mobility and evaluate
networking protocols. They are, however, often complex to
use, limited in scope, and tailored to the specific needs of
research communities. Furthermore, they often lack general
reporting functionality, only perform algorithmic simulations,
or require custom simulation models, specific for the simulator.
Ideally, one wants to run and evaluate the actual application
without reimplementing the algorithm in Java or C++, as
required for The ONE [1] or OMNET++ [2], respectively.
Prior research in the field of emergency communication and
DTNs [3], [4], [5], [6] often contains similar evaluations of
different software. Yet, they do not share a common platform

Fig. 1: Example scenario involving various mobile nodes with
different movement speeds and communication ranges.

for result collection and evaluation, requiring the researcher to
set up the process from scratch for every project. This might
even include standard metrics such as resource utilization
(CPU, memory, bandwidth, etc.) when evaluating a DTN
stack for a disaster messaging service. This leads to the fact
that some side effects of a concrete implementation are not
directly visible and, thus, may be overseen in the analysis.
By automating this process and making it easy to extend
and use, the quality of network evaluations for challenging
network conditions in general can be improved. Also, besides
supporting researchers in their evaluation, this can also be used
by developers in Continuous Integration (CI) services to ensure
correctness and performance in a predefined set of scenarios.
Additionally, this provides non-domain experts the opportunity
to evaluate and compare different software in a standardized
way and compare performance metrics. This also leads to the
opportunity to share a standardized set of tests and evaluations
for emergency communication scenarios.

In this paper, we present coreemu-lab1, a novel open-source

1https://github.com/gh0st42/coreemu-lab

framework that streamlines the process of setting up, running,
and evaluating of complex network simulation scenarios, com-
bining network simulation, system monitoring and analysis
tools. To this end, we created a self-contained and portable sys-
tem, wrapped into a docker container. Thus, except for docker,
no further dependencies are needed on the host. Our solution
is built upon the CORE network emulator (coreemu) [7] and
can be run interactively with a GUI or headless for automated
experiments. Through coreemu, a network topology can easily
be created interactively. Furthermore, movement patterns can
be added to simulate node mobility. We provide a wide range
of monitoring services that work independent of the simulated
software and gather metrics such as network utilization, CPU
and memory usage as well as wireless contact times through-
out the simulation. The emulated nodes are all isolated in
Linux namespaces and thus can run any Linux software, e.g.,
IBR-DTN [8] or dtn7 [9]. Finally, we collect all relevant data
from the emulated nodes and provide configurable reports and
figures from these metrics. The whole system is designed to
be customized for third-party sensors and analyzers.

In this paper, we present the following contributions:
• A new integrated, multi-platform, and batteries-included

environment for interactive emulated network services
• A novel framework for fully automated network simula-

tions, including reporting
• A set of command-line tools to orchestrate and automate

coreemu
• A novel tool for interactive movement pattern creation
• A novel rust crate to interact with coreemu for further

automation and utility development

II. RELATED WORK

There are many different environments for network simula-
tions [1], [2], [7], [10], [11], [12] of which some also include
basic reporting functionality.

Commonly used tools such as The ONE [1], OMNET++ [2],
and ns3 [10] are all discrete-event network simulators. There-
fore, they scale really well for large-scale simulation but
usually only implement specific protocols within their environ-
ment. Thus, one has to write code specifically for the simulator
in a predetermined language, e.g., Java or C++. These systems
are not meant to run off-the-shelf networking code as they
would be deployed on an actual system.

Some of these tools are highly domain-specific, such as The
ONE [1], which is solely designed for DTN simulations and
the evaluation of different DTN routing algorithms. Regular
communication or mesh routing is not possible within this
environment. But for its intended purpose, it already comes
with many movement models and a toolkit for generating
reports and plots. As a result, it is very easy to work on
new DTN routing algorithms and get an instant evaluation and
comparison with the standard algorithms shipped. Therefore, it
is very popular within the research community providing add-
ons such as natural disaster mobility models [13] or using
them for information-centric networking (ICN) in disaster
situations [14].

For the most realistic network simulation, setups like Mini-
World [15], that use full system emulation with QEMU
instances for the nodes, can be used. While this has the
benefit of being able to simulate different CPU architectures
running completely different operating systems, starting such
a simulation takes a long time and is also very heavy on the
host system resources, even when distributed amongst different
machines. Thus, quickly simulating a larger number of nodes
is infeasible.

Other approaches such as QOMB [16] which were used in
DTN evaluations [17] try to achieve this scalability by using
massive amounts of physical computers, which is not practical
for most use-cases.

As a more resource preserving alternative to full sys-
tem emulation, a few solutions such as Mininet-WiFi [11],
coreemu [7] and meshnet-lab2 make use of Linux network
namespaces to separate userland programs. Therefore, the
simulation is as lightweight as starting the actual programs
of each node plus some management overhead for mobility
and link calculation. While the first one mainly focuses on
Software-Defined Wireless Networks (SDWN), the last one is
very young and only provides basic features. As coreemu has
been around for quite some time, is actively maintained, and
also has integration for advanced radio-link emulation using
EMANE [18], it was chosen as the basis for coreemu-lab.
Apart from more realistic propagation models, EMANE also
allows integration of Software-Defined Radios for hardware-
in-the-loop experiments with custom physical layers. Its main
drawbacks are that it is not very portable, requires quite a few
dependencies, and lacks good built-in report generation.

Another related field is automated network experiments.
Here, Frömmgen et al. [19] presented MACI, a very powerful
platform for automatically performing large numbers of exper-
iments with integrated results analysis. It consists of multiple
docker images and a web frontend. MACI can work with
different simulation backends, but it is not intended to be
run interactively to watch or debug a single experiment. Also,
users must provide their own post-simulation analysis scripts
for generating the reports. While it definitely has its benefits
when running large sets of experiments in more or less easy
to parameterized configurations, e.g., 5 topologies x 5 random
seeds x 5 different algorithms resulting in 125 individual runs,
it also brings much complexity with it.

So the most commonly used software in research and
industry often focuses on a single aspect such as simulating a
network environment or they ship a rich environment, includ-
ing plotting toolkits, but are very complex and even then do not
work out of the box for the most common scenarios. Thus, we
see a need for a portable, preconfigured and accessible solution
for the evaluation of networking software that can easily be
extended to ones needs.

III. DESIGN

With coreemu-lab, we want to achieve two major goals:
1) an interactive tool for exploring and playing with network

2https://github.com/mwarning/meshnet-lab

applications and 2) an automated and scalable automation
framework that works without human interaction. A few
principles lead many of our design decision:

a) Convention over Configuration: We want the system
to be easily accessible and of practical use. Thus, we choose
sane and common defaults, which can be overridden but should
work in most cases out-of-the-box. This includes the selection
of gathered metrics but also the following report generation.

b) DRY: Don’t Repeat Yourself: Testing and evaluating
networking software thoroughly can be a very repetitive task.
This includes selecting and starting monitoring sensors for
various metrics but also includes the creation and selection
of mobility models. Furthermore, writing scripts for plotting
graphs and generating reports is a reoccurring and often very
similar task, even for slightly different sensor metrics.

c) Batteries Included: Whether one is a researcher in-
terested in improving specific aspects of, e.g., a DTN routing
protocol, or a user trying to decide which application has the
desired properties in a specific scenario, learning and adapting
to new and complex tools is often very time-consuming.
Therefore, common tools and frameworks should already be
present and usable, so one can focus on the interesting aspects
of such an evaluation.

d) KISS - Keep It Simple, Stupid: We think it is more
beneficial in the long run if people do not have to learn too
many new technologies for repetitive tasks such as network
evaluations. Thus, we try to reuse tools and environments
many people are already familiar with such as regular shell
scripts for configuration and automation as well as python.
Besides gnuplot, the latter is especially common for data sci-
ence, analyzing evaluation results and generating meaningful
figures. This should ensure that a broad number of users can
use and easily extend coreemu-lab to fit their needs. Another
aspect is that we want users to keep the freedom to implement
their network services in whatever language/runtime they
want. Our simulation environment can run anything that runs
on stock Linux without modification, e.g., native binaries
produced by Golang, rust, C/C++, JVM code or interpreted
Python/JavaScript are all fine. There is no need to link to a
specific simulation library or structure code differently.

e) Portability: We wanted an environment for our ex-
periments that can easily run on different machines without
the hassle of installing a million of dependencies that might
not work on different Linux distributions or other operating
systems. Everything should be as self-contained and portable
as possible. Thus, one can easily move from a laptop for
designing an experiment to big backend servers that are used
for CI or large-scale simulation runs in parallel.

Figure 2 shows the main steps needed to perform a typical
evaluation run. The remainder of this section describes the
main components of this process in more detail.

A. Network Emulation and Mobility

As a foundation for the simulation of the network and the
emulation of the different nodes, we selected coreemu [7].
This system is fairly lightweight, as each node is just a Linux

Fig. 2: Steps performed when running an experiment in
coreemu-lab.

namespace, separating it from all other nodes. Thus, the cost
of running a node is only the processes contained in the actual
namespace, the kernel and anything else needed is shared
with the other systems. A full system emulation, e.g., using
QEMU would provide even more flexibility and realism but
does not scale as good and is very demanding on the hardware
as shown by Schmidt et al. [15]. Additionally, support for
different networking technologies such as wired links and
various radio links is needed. While basic WiFi simulation
is already possible in coreemu, more realistic models can be
provided by EMANE [18], which also integrates nicely with
the network emulator. Regarding the position of nodes, it is
possible to define static network topologies or import ns2
movements that get replayed or looped for the simulation.
The ns2 movement format is very common, used in various
different simulation environments, and can also be converted
to from bonnmotion [20]. Additionally, individual nodes can
be assigned new positions during runtime through the GUI or
the gRPC interface provided by coreemu. The actual wireless
links are calculated and realized through local ethernet bridges
and ebtables rules.

B. Monitoring Services

While some experiments require special sensors to evaluate
certain aspects of the simulation, some standard properties are
always of interest. The usage of local system resources such
as CPU, RAM or I/O are always interesting, as they are a
good indicator on the system requirements when deploying the
application under evaluation. Furthermore, these can be used to
draw conclusions on the energy consumption of the system.
Additionally, network resources also have to be considered.
Thus, logging data such as the used bandwidth on the different
links at any given time can be very helpful. Beyond the
costs and limitations of the network connection itself (e.g.,
expensive or volume-limited satellite or LoRa uplink), band-
width can cost battery life. Another interesting property of the
simulated system, especially for DTN emergency scenarios, is
the number of contacts between the nodes and their duration.

All of these metrics can be gathered independent of a specific
application running in the simulation.

Of course, custom logging for protocol specific monitoring
services can easily be added without making changes to
coreemu-lab. While extending our open source framework
is always possible, it should not be necessary as third-party
additions can be added through the experiment configuration.

C. Running the Experiment

In coreemu-lab there should be several modes of opera-
tion. Without any configuration the standard coreemu GUI is
started, this way one can interactively design new network
topologies and play with different node configurations. If a
configuration is provided, one can choose between an interac-
tive session with GUI or a headless version. Prior to starting
an actual experiment, an optional warm up period should
be configurable. Thus, nodes can already start moving and
generate traffic or messages to have a realistic starting point.
Without a configured runtime for the experiment, it will run
until a user signal is received to properly end the experiment.

D. Data Collection

After the simulation has ended, the application(s) as well
as the monitoring services are shut down. By default, all log
files in any of the node subdirectories are collected and copied
to a central results folder. To avoid any accidents or data loss
when rerunning experiments, this folder should have a unique
name. Thus, we construct it from the experiment name and
a timestamp. Additionally, full copies of the node directories
can be preserved in the results folder. As a lot of (binary)
data can accumulate during a long-running simulation, this
functionality is disabled by default.

E. Analyzing Results

Parsing different log files and drawing meaningful conclu-
sions or plotting the results is often a tedious task. Even though
the process is often very similar and the requirements are
the same no matter what metric (CPU, RAM, etc.) is to be
analyzed, there is no out-of-the-box program to do this. Often
gnuplot or python with pandas and matplotlib are used for
drawing graphs out of the raw numbers. While one might
develop a good intuition by looking at the raw data pieces
to spot different bottlenecks within an application, having
automatically generate figures is often much easier to reason
about. Therefore, we want standard reports that summarize an
applications behavior over the simulated time. These analyses
should give information on a per-node basis, with averages and
standard deviation respectively the min/max values, but also
give information about the overall simulation average of the
specific metric. By also providing the standard data analysis
frameworks within coreemu-lab, one can easily add custom
reports using, e.g., Jupyter notebooks.

IV. IMPLEMENTATION

As some of the used tools have a lot of dependencies, which
are not all available on all platforms or Linux distributions,

we decided pack everything together in a docker container.
Therefore, the whole setup is very portable, self-contained, and
easy to deploy on new machines. An advantage of this setup is
the increased reproducibility and that people can use our image
as a basis for their own docker-based evaluation environments
with other tools and features added. The whole system can be
deployed by copying a single shell script that bootstraps the
docker instance. We have successfully used this on various
Linux distributions as well as macOS. All relevant setting can
be provided through a shared directory, where also the results
are logged and custom scripts are located. If our clab startup
script is invoked without parameters and no experiment.conf
is found in the default location, it just starts coreemu in an
interactive session with its GUI. If an additional parameter
after the shared volume is provided, an interactive shell is
started. This can be used to replot some of the images or to
test custom scripts without starting the coreemu GUI. A brief
overview of the main components of the docker container can
be seen in Figure 3. In the following, we give some more
implementation details about the key components.

Fig. 3: General overview of coreemu-lab.

A. Experiment Configuration

The configuration file, experiment.conf, is actually a unix
shell script that is loaded by the experiment runner (core-
experiment). A full example of such a configuration can be
seen in Listing 1. This approach provides a lot of flexibility,
as one can easily add own variables or even have hooks with
custom code that gets executed. By default, we support pre,
post and analyze hooks that get automatically called (when
present) at various stages of the experiment. These can be
used to generate data on the nodes prior to the start of
the simulation, perform custom processing after simulation
has ended, or execute additional reporting scripts. The main
downside of our approach is that shell scripts are rather strict

about their syntax when it comes to declaring variables and
such. Thus, users need to be familiar with unix scripting.

NAME=example1
SCENARIO=twenty_nodes.xml

GUI=0

MONITOR_PIDSTAT=1
MONITOR_PIDSTAT_PARAMS="dtnd"

MONITOR_NET=1
MONITOR_NET_PARAMS="eth0"

MONITOR_CONTACTS=1
#MONITOR_CONTACTS_PARAMS="1"

MONITOR_XY=1
#MONITOR_XY_PARAMS="1"

#START_EXEC=("echo started > started.log"
"echo second > second.log")

START_DAEMONIZED=(’dtnd -n $(hostname)’)

SHUTDOWN_PROCS="dtnd"

WARMUP=20
RUNTIME=300

#COLLECT_EVERYTHING=1

Called prior to monitoring/app starting
pre() {

echo "pre hook" > pre.txt
}

Called prior to collecting logs
post() {

echo "post hook - results in $1" > post.txt
}

Called after logs have been collected
analyze() {

echo "post hook - results in $1" > post.txt
}

Listing 1: coreemu-lab example configuration

B. Network Emulation and Mobility

As already mentioned, the main simulation is based on
coreemu and, thus, requires Linux plus many dependencies
to run. We put coreemu into a separate docker image3. By
bundling it this way, it can be used on any platform that
supports docker and X11 for displaying the GUI, e.g., macOS.
We tried to keep this image as minimal as possible. Thus, the
other coreemu-lab dependencies are added in another image4

that is derived from the pure coreemu one.
To make working with coreemu from the command line

and in scripts easier, we provide some helper scripts5. They

3https://hub.docker.com/r/gh0st42/coreemu7
4https://hub.docker.com/r/gh0st42/coreemu-lab
5https://github.com/gh0st42/core-helpers

contain functionality to quickly execute commands, in parallel
or sequentially, on all nodes or daemonize a given application
on the nodes. Additionally, they also contain functionality to
generate random files and check for FATAL log entries in all
running nodes, which usually indicate a crash.

Mobility can be achieved in several ways within the emu-
lated network. With the GUI running, nodes can be interac-
tively dragged around in real-time. For automated movement,
one can also use the gRPC interface to directly update the
positions of nodes in a running simulation. Through this
interface, it is possible to also link external programs with
live position data to the network within coreemu-lab. Finally,
wireless nodes can be linked to ns2 movement files for
more complex mobility scenarios. This is especially useful as
bonnmotion [20] can automatically generate various movement
traces for this format and also convert to other formats.

To interactively change between different topologies and
perform the transitions between them, we also provide a tool,
the core-automator6, to record and play back animations stop-
motion-style. An example session with four wireless nodes
can be seen in Figure 4. In the tool, you can specify a delay
between each step, then drag the nodes around in the running
simulation and record snapshots of these positions. Recording
and playback can be initiated from the command line, but we
also provide a graphical frontend for ease of use as seen in
the figure. The file format of this recording is relative simple
but also supports executing commands on nodes as displayed
in Listing 2. This enables one to trigger events like message
generations at specific points in time or at certain locations.

Fig. 4: coreemu with 4 nodes and our CORE mobility studio.

%delay 0.5

robot1 50 50 hostname > myhost
drone1 100 50
drone2 200 150
drone3 350 150
drone4 400 250
center1 763 276

6https://github.com/gh0st42/core-automator

-- STEP
robot1 55 50
drone1 110 50
drone2 200 170
drone3 350 130
drone4 370 250

-- STEP
robot1 60 50
drone1 120 50
drone2 210 190
drone3 360 120
drone4 420 250

Listing 2: core-automator example scenario

While coreemu ships with a python API, which is not
easily installable on non-Linux machines, we also developed
a rust client library. This wrapper around the gRPC service
makes it easy to get session and node information about a
running simulation. Additionally, it can be used to perform
updates to links and nodes from external tools. Having a
statically compiled language, makes it easier to ship tools
without requiring many dependencies and thus can be used
on more platforms.

C. Monitoring Services

To monitor the running simulation, we rely mostly on small,
resource efficient unix tools. Most information regarding a
running process, such as CPU and memory (resident and
virtual) as well as IO, can be easily collected through the
pidstat7 utility. By default, we monitor all processes on each
node, but one can request that only a specific process, e.g.,
the main application, should be logged. As networking stats
are vital for the evaluation of communication systems, we
also collect network interface usage statistics through the use
of bwm-ng. The emulated nodes can have more than one
network interface. Thus, we log the traffic on all of them. If
the amount of logging data is of concern, one can also restrict
the monitored interfaces to only specific ones.

Especially for disaster communication where nodes are
often very mobile and connections are disrupted frequently, it
is important to know when and how often nodes had contact to
others. Therefore, we wrote a monitoring service that directly
gets radio-link and topology information from the running
coreemu instance. These contact traces contain which node
was in communication range of another at any given time.
Furthermore, we also use this interface to record the exact
position of a node at a specified interval. As movements can
also be triggered through the external gRPC interface, having
extra traces of the actual movement can be very helpful. This
can also be used to correlate and interpret contacts and other
network related events in the analyzes stage.

D. Running the Experiment

Prior to recording the actual experiment, an optional warm
up period can be defined. This is commonly used to get

7https://github.com/sysstat/sysstat

TABLE I: Evaluation Scenario Settings

Dimensions 1000 x 750 mˆ2
Scenario Simulation time 240s

Nodes 5

Mobility Model RandomWaypoint
Speed 1.5 - 15 m/s

Type binary
Traffic Interval 15 - 40 s

Size 64 - 512 KB

App. Name goforban
Discovery 5 s
Routing opportunistic/epidemic

Comm. PHY rate 54 MBit/s (802.11g)
Radio range 180m

applications in a realistic state where they already carry
messages around and have gathered some routing information.
After this step, the monitoring is started and the experiment
will either run for a predetermined time or indefinitely, waiting
for a manual shutdown. A manual end of the experiment
can be triggered even in headless instances by creating a file
shutdown.txt in the shared directory.

E. Data Collection

After the applications and monitoring services have been
stopped that data from the emulated nodes is collected. By
default, all log files are identified on the different nodes
and copied to the results directory for further processing. If
explicitly requested, the whole directory of each node can
also be preserved containing everything stored during the
simulation including large files and databases which are often
not necessary for further analyzes.

F. Analyzing Results

In our standard setup, we generate plots of different metrics
if monitoring was activated. We mainly use python with
pandas and matplotlib for the visualization to output PDFs
in the results folder. The pre-selected plots feature averages
and standard deviation respectively minimum and maximum
peaks for the nodes as well as the total mean across all nodes
for a specific metric. Currently, plots are generated for vari-
ous process related metrics, network usage, node movement
and radio contacts. Additionally, textual statistics and reports
about specific aspects of the simulation can be automatically
generated, e.g., the contact times of wireless nodes or periodic
message and file generation.

V. EXPERIMENTAL EVALUATION

In the following, we present an experimental evaluation of
some of the key components of our approach. All experiments
were performed on a 4,2 GHz Quad-Core Intel Core i7 with 48
GB of RAM. The SSD drive should not play a big role as most
parts of the simulation run on a tmpfs and thus reside in RAM.
The system was running macOS 11.4 to show the portability
and workflow of coreemu-lab on non-Linux platforms.

n1 n2 n3 n4 n5

Nodes

0

1

2

3

4

5
CP

U
us

ag
e

CPU

(a) CPU usage.

n1 n2 n3 n4 n5

Nodes

0

2000

4000

6000

8000

10000

Si
ze

 in
 M

B

RSS

(b) Residential memory usage.

n1 n2 n3 n4 n5

Nodes

0

100000

200000

300000

400000

500000

600000

700000

Si
ze

 in
 M

B

VSZ

(c) Virtual memory allocated.

Fig. 5: Analysis of main process statistics gathered in the example simulation for each node as averages and standard deviation.
The dashed red line represents the average across all nodes.

A. Scenario Setup

The details of our configured example scenario can be found
in Table I. Our movement traces were generated through bon-
nmotion using a RandomWaypoint model and then converted
to ns2 for the inclusion in our topology file. Binary files are
created in random intervals and shared amongst the nodes. The
simulated adhoc WiFi emulates 802.11g representing older
devices which usually have limited bandwidth. The network
service we chose for our evaluation is an opportunistic gossip
protocol called forban8 that we implemented in Golang9. It
epidemically replicates shared data when two nodes meet. A
local neighborhood discovery is performed every 5 seconds.

B. Example Evaluation

In the following, we present various results as they are
automatically generated by coreemu-lab. They are independent
of any program specific parameters and should be applicable
to any program under evaluation. These evaluations can be
then combined with custom analyzers that, e.g., parse the log
files generated by DTN daemons or mesh routing software.

To get a feeling for the performance of the analyzed app,
we show a subset of the generated plots in Figure 5. Here we
can see the average of any given metric over the experiment
runtime for each node. Additionally, the standard deviation is
plotted as error bars when applicable as well as the average
across all nodes for the whole simulation is displayed as a
dashed horizontal line in the plot. These types of plots can be
used for several of the metrics.

Furthermore, network usage statistics can be plotted for
specific interfaces or accumulated across all interfaces of a
node. The metrics include incoming and outgoing bytes per
seconds, as well as total number of bytes per second 6 and
number of packets and errors.

Another common metric that is often relevant is the number
of contacts made between the nodes. These are the possible
opportunities for data exchange in DTNs and emergency
communication systems. We currently support visualization by

8https://github.com/adulau/Forban/
9https://github.com/gh0st42/goforban/

0 50 100 150 200 250
time in s

0

1,000,000

2,000,000

3,000,000

4,000,000

by
te

s_
to

ta
l/s

n1
n2
n3
n4
n5

Fig. 6: Total bandwidth used per node over the experiment
runtime. The dashed red line is the average across all nodes.

contacts over time (Fig. 7a) or the number of total contacts per
node (Fig. 7b). The contacts as well as the network usage are
highly dependant on the movement pattern chosen as well as
the radio link properties, especially the simulated radio range
and the available bandwidth.

Overall, coreemu-lab needed 4:30min to complete the whole
simulation, including the emulator setup, starting all moni-
toring services and doing the post experiment analyses. As
the simulation runtime was set to 4 minutes, we have a 30s
overhead for our five node setup.

VI. CONCLUSION

In this paper, we presented coreemu-lab, a novel framework
for automated simulation and evaluation of networked apps.
It can be used as an interactive tool to explore various
challenging networking conditions with different software as
well as headless operation for fully automated tests. Our
approach gives one the ability to focus on the actual problems
such as providing new communication systems for disaster
response instead of learning new complex tools and repeating
the same steps over and over again for evaluations. It is multi-
platform and was tested on Linux and macOS, where, thanks

0 50 100 150 200
time in s

0

1

2

3

4

5

6

7

8

to
ta

l n
um

be
r o

f c
on

ta
ct

s

contacts

(a) Contacts over time.

1 2 3 4 5

node number
0

50

100

150

200

250

300

to
ta

l n
um

be
r o

f c
on

ta
ct

s

(b) Total number of contacts per node.

Fig. 7: Analysis of main process statistics gathered in the
example simulation for each node as averages and standard
deviation. The dashed red line is the average across all nodes.

to Docker, it runs without further dependencies in a self-
contained environment. The presented system is independent
of an app language and works with anything from native
binaries over Java bytecode to interpreted programs written
in Python or node.js. We provide services to monitor standard
metrics and later on turn these into plots and reports.

In the future, we want to incorporate even more monitoring
and reporting specifically for DTN scenarios that should work
with most existing disaster communication software out-of-
the-box. Furthermore, we plan to integrate coreemu-lab with
Software-in-the-Loop (SITL) simulations of the physical world
to, e.g., see the effects of various radio-link and transport layer
optimizations on the control of Unmanned-Aerial-Vehicles
(UAVs). Finally, we hope to build a community around
coreemu-lab that also contributes new features, scenarios and
analyzers for many different use-cases.

ACKNOWLEDGMENT

This work has been co-funded by the LOEWE initiative
(Hessen, Germany) within the emergenCITY center, as well as
the German Research Foundation (DFG) in the Collaborative
Research Center (SFB) 1053 MAKI.

REFERENCES

[1] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn
protocol evaluation,” in International Conference on Simulation Tools
and Techniques (SIMUtools), 2009, pp. 1–10.

[2] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in International Conference on Simulation Tools and
Techniques (SIMUtools), 2008.

[3] M. Fauzan, T. W. Purboyo, and C. Setianingsih, “Ibr-dtn to solve com-
munication problem on post-disaster rescue mission,” in International
Seminar on Intelligent Technology and Its Applications (ISITIA), 2019,
pp. 24–28.

[4] L. Baumgärtner, P. Gardner-Stephen, P. Graubner, J. Lakeman, J. Höchst,
P. Lampe, N. Schmidt, S. Schulz, A. Sterz, and B. Freisleben, “An
experimental evaluation of delay-tolerant networking with serval,” in
IEEE Global Humanitarian Technology Conference (GHTC), 2016, pp.
70–79.

[5] A. Sterz, L. Baumgärtner, R. Mogk, M. Mezini, and B. Freisleben, “Dtn-
rpc: Remote procedure calls for disruption-tolerant networking,” in IFIP
Networking Conference (IFIP Networking), 2017, pp. 1–9.

[6] R. Beuran, S. Miwa, and Y. Shinoda, “Performance evaluation of dtn
implementations on a large-scale network emulation testbed,” in ACM
International Workshop on Challenged Networks (CHANTS), 2012, p.
39–42.

[7] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “Core: A real-
time network emulator,” in IEEE Military Communications Conference
(MILCOM), 2008, pp. 1–7.

[8] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, “Ibr-dtn: A
lightweight, modular and highly portable bundle protocol implemen-
tation,” Electronic Communications of the EASST, vol. 37, 2011.

[9] L. Baumgärtner, J. Höchst, and T. Meuser, “B-dtn7: Browser-based
disruption-tolerant networking via bundle protocol 7,” in International
Conference on Information and Communication Technologies for Dis-
aster Management (ICT-DM), 2019, pp. 1–8.

[10] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[11] R. d. R. Fontes and C. E. Rothenberg, “Mininet-wifi: A platform for
hybrid physical-virtual software-defined wireless networking research,”
in ACM SIGCOMM Conference, 2016, pp. 607–608.

[12] B. Richerzhagen, D. Stingl, J. Rückert, and R. Steinmetz, “Simonstrator:
Simulation and prototyping platform for distributed mobile applica-
tions,” in International Conference on Simulation Tools and Techniques
(SIMUtools), 2015.

[13] M. Stute, M. Maass, T. Schons, and M. Hollick, “Reverse engineering
human mobility in large-scale natural disasters,” in ACM International
Conference on Modelling, Analysis and Simulation of Wireless and
Mobile Systems, 2017, pp. 219–226.

[14] M. W. Kang and Y. Won Chung, “Performance analysis of a novel dtn
routing protocol for icn in disaster environments,” in International Con-
ference on Information and Communication Technology Convergence
(ICTC), 2018, pp. 1276–1278.

[15] N. Schmidt, L. Baumgärtner, P. Lampe, K. Geihs, and B. Freisleben,
“Miniworld: Resource-aware distributed network emulation via full
virtualization,” in IEEE Symposium on Computers and Communications
(ISCC), 2017, pp. 818–825.

[16] R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata, K.-i. Chinen, Y. Tan,
and Y. Shinoda, “Qomb: A wireless network emulation testbed,” in IEEE
Global Telecommunications Conference (GLOBECOM), 2009, pp. 1–6.

[17] R. Beuran, S. Miwa, and Y. Shinoda, “Performance evaluation of dtn
implementations on a large-scale network emulation testbed,” in ACM
International Workshop on Challenged Networks (CHANTS), 2012, pp.
39–42.

[18] J. Ahrenholz, T. Goff, and B. Adamson, “Integration of the core and
emane network emulators,” in Military Communications Conference
(MILCOM). IEEE, 2011, pp. 1870–1875.

[19] A. Froemmgen, D. Stohr, B. Koldehofe, and A. Rizk, “Don’t Re-
peat Yourself: Seamless Execution and Analysis of Extensive Network
Experiments,” in International Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2018.

[20] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn,
“Bonnmotion: a mobility scenario generation and analysis tool,” in Inter-
national Conference on Simulation Tools and Techniques (SIMUtools),
2010, pp. 1–10.

