
1

mSync: Physical Layer Frame
Synchronization Without Preamble Symbols
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Abstract—We present a novel physical layer frame format and a corresponding decoding strategy for energy-constraint single-carrier
transceivers, often used in sensor networks and cyber-physical systems. The main advantage of our approach is that decoding does not
rely on dedicated preamble symbols, which usually introduce considerable overhead in terms of energy consumption and utilization of the
wireless channel. We show that omitting the preamble can be achieved by buffering the signal in the receiver and processing the samples
twice; first to synchronize and in a second iteration to decode the actual data. To introduce our approach, we provide a theoretical
description, including a discussion of the implications of synchronizing on data symbols instead of optimized preamble sequences. The
practical feasibility of the algorithm is shown by simulations and experiments using prototype implementations based on software defined
radio. We implemented our algorithm for two technologies, a custom ultra low-power BPSK transceiver and the O-QPSK physical layer of
the IEEE 802.15.4 standard. Finally, we present an extension of the algorithm that allows us to reduce the buffered data to a small
constant number of samples, making our algorithm applicable to physical layers independent from their maximum frame size.

Index Terms—Physical Layer, Frame Synchronization, Preamble, Low-Power Communications, Software Defined Radio
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1 INTRODUCTION

Today, people as well as an ever increasing number of things
around us are connected every time and everywhere by
means of wireless communications. To support a diverse
set of applications, a broad spectrum of technologies is in
use. On the one end of the spectrum, there are performance-
oriented technologies like LTE or WiFi that employ advanced
concepts such as multi-user MIMO to boost throughput and
spectral efficiency. On the other end of the spectrum, there are
low-power and low-bandwidth single carrier technologies
that allow for energy efficient operation. Especially with the
proliferation of Industry 4.0 and the vision of an Internet of
Things (IoT) [1], the second kind of devices has shifted into
the focus of research and development. It is well recognized
that energy efficient wireless technologies form the central
building block for many applications including Wireless Sen-
sor Networks (WSNs) [2], Cyber-Physical Systems (CPSs) [3],
industrial automation, wildlife monitoring [4], [5], and medi-
cal implants. More recently, also car and plane manufacturers
are looking into replacing wired system with wireless sensors
to save cabling and, thus, weight and fuel. In this paper, we
will use the more traditional term WSNs when referring to
such energy efficient wireless communication technologies.

In WSNs, the design is mainly affected by the limited
energy budget available to the device. The challenge is to find
a good trade-off between functionality and performance, on
the one hand, and network lifetime [6], on the other hand. To
optimize energy consumption and increase network lifetime,
researchers developed concepts that range from transmit
power control [7], over duty-cycled MAC protocols [8], [9],
to wake-up receivers [10].
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In this paper, we propose mSync, a novel orthogonal
concept that can complement existing approaches. The core
idea, which we briefly presented in [11], is to decode the
frame without relying on dedicated preamble symbols. By
avoiding the overhead of a dedicated preamble, the frames
are shorter, which saves energy and reduces occupancy of
the wireless channel.

The improvement can be considerable, especially since
the frame sizes in WSNs are usually small. As an example,
we consider the Offset Quadrature Phase-Shift Keying (O-
QPSK) physical layer of the IEEE 802.15.4 standard, which
forms the base of the ZigBee stack [12], [13], a popular
choice for industrial automation and IoT applications. Here,
the minimum preamble length is the equivalent of 4 byte
compared to the total size of an Acknowledgement Frame
(ACK) of 11 byte. Admittedly, an ACK presents an extreme
case where our algorithm can provide a large benefit, but we
also have to consider that in unicast networks they comprise
50 % of the frames. Moreover, even a maximum sized frame
with 133 byte in total, the overhead of 4 byte is still non-
negligible.

Apart from the O-QPSK physical layer, we apply our new
concept also to a custom ultra low-power transceiver that
we designed for a 2 g sensor mote, used to track bats in their
natural habitat [4]. In the paper, we will refer to this custom
implementation as BATS transceiver. Due to architectural
constraints of the sensor mote, we are only able to send very
short frames with a total length of 12 byte. In our initial
design, we allocated 2 byte, i.e. over 16 %, for the preamble.
This overhead can be completely avoided with mSync.

We introduce our idea by providing a thorough theoretical
description that considers the implications of synchronizing
on data symbols instead of optimized preamble sequences.
To show the practical feasibility and the general applicability
of the approach, we implement SDR-based prototypes for
two very different technologies: the BATS transceiver and the
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IEEE 802.15.4 O-QPSK physical layer. Using these prototypes,
we assess the performance by means of simulations as well as
experiments. The results highlight that our approach allows
us to eliminate the overhead of preamble symbols without
degrading physical layer performance. On the contrary,
omitting the preamble reduces the air-time of the frame,
reducing occupancy of the wireless channel. To study this
effect in greater detail, we employ a Markov model of the
IEEE 802.15.4 MAC to show how shorter frames can improve
the saturation goodput.

However, also with mSync, there is no free lunch. The
drawback of a naïve implementation is that the receiver
has to buffer samples corresponding to a maximum sized
frame. Depending on the technology, this could waste a
lot of resources and void the advantage in terms of energy
consumption. To address this issue, we present a slight
variation of the algorithm that allows us to reduce the
buffered data to a small number of samples independent from
the maximum frame size. With this, we show that mSync is
applicable to many packet-based single-carrier technologies
and presents an interesting new option in the design space
of low-power wireless communications.

Our main contributions can be summarized as follows:

• We present a novel frame format and a corresponding
decoding strategy that allows to save the overhead of
preamble symbols without degrading physical layer
performance.

• We demonstrate the feasibility and general applica-
bility of our approach by implementing SDR-based
prototypes for two communication technologies: our
BATS transceiver and the O-QPSK physical layer of
IEEE 802.15.4.

• We investigate the reduced energy consumption,
discuss the possibility to use more robust receiver
configurations, and show how shorter frames (i.e.,
frames without a preamble) can considerably increase
system level goodput.

• We finally show that, with a small variation of the
algorithm, the amount of data that has to be buffered
can be reduced to a small fixed number of samples,
making our approach applicable also to physical
layers with large maximum frame sizes.

2 RELATED WORK

Driven by the idea of smart dust [14], many researchers
began working towards distributed, decentralized, and self-
organizing networks of small sensor nodes, opening up
the field of WSNs [2]. To allow infrastructure-less ad hoc
deployments, sensor motes have to be self-powered, which
shifts energy efficient operation into the focus when reaching
for long network lifetimes [6]. Given the fact that wireless
communication typically accounts for a large fractions of the
overall power consumption [15], the transceiver and espe-
cially the MAC layer were the subject of many studies [16].

2.1 Energy-Efficient MAC
The key concept for low-power MAC protocols is duty-cycling.
With duty-cycling, the transceiver is switched on and off
following a schedule defined by the MAC protocol. This

mechanism saves energy from idle-listening, which would
otherwise consume considerable amounts of energy [15].
Duty-cycling protocols can be divided into synchronized [8]
and unsynchronized [17], [18] approaches. With synchro-
nized algorithms, the nodes align their duty cycles to agree
on possible time slots for transmissions. Such approaches
make sending less costly, but introduce signaling overhead
to establish a common time base. Using unsynchronized
protocols, a sending node does not know about the duty cycle
of its neighbors and, therefore, has to extend its transmissions
to assert that each node woke up and got a chance to receive
the frame, making transmissions costlier in terms of both
energy and channel utilization.

In that context, a note on terminology is very important:
When discussing MAC protocols, many authors refer to a
preamble as a signal that is used to wake up duty-cycled nodes,
announcing a transmission. Such mechanism is, for example,
required with unsynchronized MAC protocols. This use of
a preamble has to be clearly distinguished from the physical
layer preamble, sometimes also called physical layer training
sequence, which we discuss in this paper. A receiver uses
the physical layer preamble to synchronize on the signal by
estimating parameters like frequency and clock offsets. Our
approach, which allows saving the overhead of preamble
symbols, is a pure physical layer concept and, therefore,
independent from MAC layer algorithms. In fact, our idea
can be complemented with duty-cycled MAC protocols.

Another strategy to save energy is to use transmit power
control [7]. Intuitively, a transmitter can use lower transmit
power when addressing nodes with low channel attenuation,
such as nodes in close proximity or with unobstructed line
of sight. By decreasing the transmit power, the sender
can save energy, which would otherwise be wasted in
the power amplifiers. A potential drawback is that the
sender needs feedback to estimate the channel attenuation,
making it a good candidate in relatively static scenarios with
bidirectional communication.

A more recent trend is to drop support for complex
mesh network topologies, which are, for example, part of
IEEE 802.15.4 and stick to simpler star networks. This is
especially visible with the very successful Bluetooth Low
Energy (BLE) standard, whose energy efficiency results
mainly from changes on the link and network layer [19].
Even though the physical layer was slightly adapted towards
larger channel bandwidths, the main improvements stem
from simplified network structures that allow saving energy
through less overhead in maintaining connections.

2.2 Ultra Low-Power Communication
More recent advancements, sometimes called ultra low-power
communications, allow for even smaller sensor motes that
support network lifetimes of up to several years. Such
motes are based on wake-up receivers that are most of the
time completely switched off (or, to increase sensitivity, in
a very low-power mode) and only activated from actual
transmissions [20]. The basic principle is similar to Radio-
Frequency Identification (RFID) [21], where the transmitted
signal induces current in the receiver, which is used to wake
up the communication module.

The possibility to activate the radio module only during
actual transmissions could be regarded as the ideal duty-
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Figure 1. Comparison of normal frames (top) and mSync (bottom).
Instead of a preamble, we use the data to synchronize and calculate local
estimates for parameters like frequency offset, sampling clock offset, and
symbol timing. This allows omitting the preamble and reduce the frame
size, as only the components with the solid outline are sent over the air.

cycle and allows us to overcome idle listening all together.
This technology is an enormous step that opens the field
for completely new applications. In wildlife monitoring, for
example, we can use much smaller batteries and build light-
weight sensor motes that can even be mounted on small,
flying animals like bats [4] or crows [5].

Another idea, also adopted from RFID, is the use of
backscattered signals for communication [22], [23]. Here, tags
can be completely passive as they do not have to generate a
signal locally, but merely reflect the signal of an interrogator.
The actual information is encoded by changing the antenna’s
impedance, which varies the amplitude of the reflected signal.
While this is an interesting concept, it cannot be directly
applied to WSNs, as it relies on a very capable interrogator.

However, with ambient backscatter [22] and bistatic scat-
ter radio [23], this concept was extended and applied to
decentralized low-power networks such as WSNs. Instead
of using an interrogator signal, these works use ubiquitous
signals from broadcast radio, TV stations, or dedicated carrier
emitters. Such tags are not completely passive, but the power
consumption is greatly reduced since the signal does not have
to be generated locally, saving the energy that is otherwise
used in power amplifiers. Very recently, a similar concept
was applied to IEEE 802.11b allowing for, what the authors
call, Passive WiFi [24]. By modulating a WiFi frame from
another device, they are able to produce standard compliant
IEEE 802.11b frames, while reducing the power consumption
by orders of magnitude.

To summarize, we presented a broad spectrum of ideas
and concepts to design energy efficient wireless networks.
With our approach, we introduce another, orthogonal option
that can be beneficial for many low-power systems. By
removing the preamble without degrading physical layer
performance, mSync can complement the presented ap-
proaches and offers a new strategy to further optimize energy
consumption of low-power transceivers.

3 PREAMBLE-LESS FRAME DETECTION AND DE-
CODING

Before describing mSync, we should first recap the typical
physical layer frame format. As illustrated at the top
of Figure 1, it consists of a preamble, followed by the Start of
Frame Delimiter (SFD) and the actual data payload. In the

receiver, the preamble is used to synchronize on the frame
by deriving local estimates for parameters like frequency
offset, sampling clock offset, and symbol timing. This
is typically done with a feedback loop that locks on the
signal by adjusting the parameters according to an error
signal [25]. With symbol timing recovery, for example, the
sampling points are gradually adjusted towards the largest
opening in an eye diagram. This stage usually employs
blind estimators that work without prior knowledge of the
data. For our algorithm, it is irrelevant which exact algorithm
or combination of algorithms is used in the receiver. The
important aspect is that they adjust during reception, which
is usually the case, also in state of the art algorithms [26].

When designing a new physical layer, it can be chal-
lenging to find a parameter set that offers a good trade-off
between performance and overhead in terms of preamble
symbols. Ideally the receiver would synchronize exactly at
the end of the preamble and reliably detect the SFD. In
practice, it involves a trade-off between the overhead (i.e.,
length of the preamble and, thus, time to lock) and the
reliability of frame detection. Using a longer preamble, the
receiver has more time to synchronize and chances are higher
that the SFD can be detected.

3.1 Reversed Frame Structure

While balancing this trade-off for a custom highly-optimized
receiver, we thought of using a different frame format that
offers important advantages: it relaxes the requirements
for the synchronization algorithm, while, at the same time,
reduces the frame size, improving the energy consumption.
The core idea is to omit the preamble and adapt the frame
format shown at the bottom of Figure 1. In contrast to normal
frames, we send only the data symbols followed by the SFD,
which might, in this case, better be called an end of frame
delimiter. We will, however, stick to the term to emphasize
its correspondence with the SFD in a normal frame. When
looking at Figure 1, it is important to note that the dashed
boxes are not sent over the air but added to illustrate the
concept. Only the solid boxes depict the parts of the signal
that are actually transmitted. From the figure, we can see
that mSync allows us to reduce the frame size, while carrying
the same amount of data.

The most interesting part of mSync is the decoding
strategy for this modified physical layer frame format. Given
the fact that the receiver is not synchronized when the first
data symbols arrive, it cannot decode the data directly.
Instead, it locks on the frame by processing the signal
using the same blind estimation algorithm as the normal
receiver. The process might, however, require more input,
as it uses data symbols instead of a preamble sequence that
is optimized for fast convergence of the synchronization
algorithm.

The crux of mSync is that it buffers samples, for example,
in a ring buffer. This allows us to process the signal twice;
once to lock on the frame and another time to decode it.
Using a simple implementation, the buffer size has to be
set according to the number of samples corresponding to a
maximum sized frame plus the SFD. We will later discuss
ideas on how to reduce the amount of data that has to be
buffered.
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Using the data to synchronize, the algorithm has much
more time, i.e., the whole duration of the data symbols,
to lock on the frame. When the receiver is synchronized,
it can recognize the SFD at the end of the frame. If that
happens, the receiver keeps its state, i.e., its current estimates
of the signal parameters and, instead of continuing with the
normal sample stream, it processes the ring buffer in reverse
direction and decodes the data. During this reverse operation,
the receiver traverses the sample stream again, processing
the samples in the order indicated by the dashed boxes
in Figure 1. This process can also be thought of mirroring
the received signal in time domain at the dashed vertical
line. The name mSync, for mirror synchronization, is derived
from this central characteristic of the algorithm.

Decoding the signal while traversing the buffer back-
wards also explains why we send the over-the-air signal
reversed (i.e., why we change the samples of the data from
d1, · · · dn to dn, · · · d1). This is not strictly necessary, but it
asserts that the output of mSync (the boxes with the dashed
outline) correspond to the output of a normal receiver (cf.
the right hand side of Figure 1). This has the advantage that
the decoder outputs the exact same bit sequence as a normal
receiver, which eases integration of our algorithm. Extending
a receiver with mSync is, therefore, straightforward and
merely comprises replacing the synchronization algorithm.
The other components can be left unchanged.

The part of the algorithm that we did not discuss yet
is how the receiver stays locked while switching directions.
Since this depends on the actual algorithm that is used in the
receiver, we can only discuss exemplary implementations.
In the following, we describe how our algorithm can be
used with the Mueller and Müller (M&M) algorithm [27] for
timing recovery. While the M&M algorithm is not state of
the art, it serves as a good example to describe the concept.
However, we argue that the general idea can also be applied
to more complex state of the art algorithms like symbol
timing recovery with polyphase filter banks [26]. The M&M
algorithm implements a feedback system that performs
timing recovery and estimates the sampling clock offset,
i.e., it calculates estimates for the number of samples per
symbol Ω and the position of the n-th symbol in the sample
stream B[n]. If we consider a real-valued binary signal that
encodes its data with {1,−1}, the algorithm calculates the
error feedback e after decoding the n-th symbol as

e[n] = B̂[n− 1]B[n]− B̂[n]B[n− 1], (1)

where B̂ is the, probably corrupt, decoded symbol with
B̂ ∈ {1,−1}. This error signal is used to adjust the estimates
Ω and B as

Ω[n+ 1] = Ω[n] + gΩ e[n] (2)
B[n+ 1] = B[n] + Ω[n] + gB e[n]. (3)

Here gΩ and gB are gains for the error feedback of the
corresponding parameter that can be used to adjust the
sensitivity of the controller.

An exemplary iteration of the algorithm is illustrated
in Figure 2, which shows the noise free analog signal as
a dotted line. The actual symbol timing, unknown to the
receiver, is indicated by the solid vertical lines. The sampling
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Figure 2. Illustration of the Mueller and Müller algorithm for timing recovery
and clock offset estimation.

points of the SDR are marked as crosses, while the dots
indicate the points that the receiver considers for decoding
(i.e., the estimated symbol timing). Since the estimated
symbols are not exactly at sample positions, the receiver
interpolates the values with a minimum mean squared
error FIR interpolator. When using mSync, the receiver
uses the very same algorithm, but, in addition, stores the
samples in a ring buffer and compares the decoded values
B̂[n − m + 1], · · · , B̂[n] with the reversed SFD sm, · · · , s1

(cf. Figure 1). Once they match, the receiver continues
processing samples from the buffer. To foster compatibility
with the normal receiver, we regenerate the preamble bits in
the receiver and prefix them before every frame, just as if it
would have been received over the air. This way, mSync is
completely transparent for the rest of the receiver.

3.2 Synchronizing on Data

One important difference of mSync is the use of an unknown
data signal instead of optimized preamble sequences for
synchronization. For frame-based systems that need the
receiver to re-synchronize on every frame, this could, in
theory, cause problems. Depending on the physical layer
and the receive algorithm, not all bit sequences might be
equally suited to derive signal parameters. A Binary Phase
Shift Keying (BPSK) signal that is all ones or all minus
ones, for examples, cannot be used to extract symbol timing
information. Fortunately, this is unlikely to happen, since
a state-of-the-art physical layer uses a scrambler if the data
tends to include long strings of ones or zeros. Also from
an information theoretic perspective, the physical layer will
be tuned towards equally probable symbols to maximize
entropy and, thus, self-information.

To better understand the implications of using mSync,
we study how locking on data symbols differentiates from
ideal preamble sequences. Our motivation for this study is
twofold. First, we want to understand how much longer
it takes to synchronize on a random data pattern. Second,
we want to highlight another potential benefit of mSync.
Using the data to synchronize, we have much more time to
lock on the frame. This allows us to reduce the gain of the
error feedback in the controller, which slows convergence
of the synchronization algorithm, but also reduces the noise
feedback of the controller, making it more stable.

To show this effect, we set up simulations to compare
the ideal locking sequence for the M&M algorithm (i.e.,
00110011 · · · ) with a random bit pattern. Similar to our
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Figure 3. Impact of the error feedback gain on the time that it takes to lock. With mSync, we have more time to synchronize, allowing us to choose a
setting with slower convergence, but lower error floor.

BATS transceiver (described in more detail in Section 5),
we produce a BPSK signal with five samples per bit and
apply a matched filter. The resulting sample stream is passed
through an Additive White Gaussian Noise (AWGN) channel
to produce a signal with a given target Signal to Noise Ratio
(SNR) Γ. To rule out interactions from level controllers and
to isolate the effect of locking on the data, we scale signal
and noise, such that the average signal S plus the average
noise power N equals unity

S =
Γ

1 + Γ
, N =

1

1 + Γ
. (4)

To keep the example simple, we fix Ω to the correct
value and record the average phase error dependent on the
sample of the frame. The average phase error after the n-
th bit for 100k frame transmissions at an SNR of 10 dB are
depicted in Figure 3. With Ω = 5 the maximum phase
error is 2.5, which we set as 100 %. In Figure 3a, we show
a configuration with a rather high error feedback (gB =
0.6) and fast convergence. Using a normal frame with an
optimized preamble sequence, the phase error stabilizes fast
(after only about 8 bit). Such configuration might be used
in a typical physical layer, where the preamble should be as
short as possible to reduce overhead. As expected, mSync
needs more time to lock on a frame. In this setup, it reaches
the error floor after about 20 bit.

In Figure 3b, we show results for the same configuration,
but with reduced error feedback (gB = 0.3). While locking
is slower in that configuration, the general trend is similar.
mSync needs more time to lock than an optimized preamble
(about 25 bit for a normal frame compared to about 50 bit
for mSync). The advantage of the slower configuration is its
higher stability through lower noise feedback. In the slower
configuration, the phase error reaches an error floor of only
10.5 % compared to 16 % with the faster configuration. Such
configuration is clearly beneficial, but might not be suitable
in a normal receiver. The longer convergence time, would ask
for a longer preamble and, therefore, increase the overhead
per frame, a problem that we do not face with mSync.

To summarize, the results highlight mSync’s potential
to use more stable controller configurations with lower
noise feedback. While the quantitative results of these

experiments are valid for the M&M algorithm, we expect
similar qualitative behavior also for other synchronization
algorithms.

4 IMPLEMENTATION

To study our algorithm and to show the feasibility of the
approach, especially that it is possible to stay locked while
switching directions, we implemented the algorithm for
GNU Radio, a real-time signal processing framework for use
in SDR systems [28]. In contrast to, for example WARP [29],
GNU Radio implements signal processing on a General
Purpose Processor (GPP), like a normal PC, which lends
itself well for rapid prototyping [30]. Using GNU Radio,
signal processing is split in blocks that implement specific
functions like filters, resamplers, and modulators. To exploit
modern multi-core CPUs, signal processing is parallelized by
starting each block in a separate thread. Compared to itera-
tive programming environments, like MATLAB, parallelized
processing adds complexity, but it is the central design point
that enables real-time operation.

In GNU Radio, a transceiver is realized with a flow graph.
It defines a specific configuration with a set of blocks, their
parameters, and their connections. To get a better idea of
the concept, Figure 4 shows a screenshot of the relevant
parts of our BATS receiver in GNU Radio Companion, a
graphical frontend to setup and configure GNU Radio flow
graphs. Integrating our algorithm in the existing receiver was
straightforward. We merely had to change the blocks in the
shaded area, which contains the logic to switch between
the legacy M&M implementation and mSync. With the
Selector blocks, we can pipe the incoming sample stream
either through the normal (top) or the mSync implementation
(bottom). The other blocks of the receiver can be left
unchanged. They are used to demodulate the differential
BPSK signal to a binary stream, search for the preamble
sequence, and, once found, process the data payload.

GNU Radio already comes with two very similar imple-
mentations of the M&M algorithm; one for complex and one
for real signals. We implemented our algorithm for both
versions, since the BATS receiver uses the complex variant,
while the IEEE 802.15.4 receiver uses the real one.
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Figure 4. The relevant part of our ultra low-power receiver in GNU Radio Companion. To support both the normal preamble as well as our
preamble-less reversed frame format, we merely had to introduce the possibility to switch the clock recovery algorithm (shaded area).

Figure 5. The experiments are conducted in an office environment, using
GNU Radio together with Ettus Research B210 SDRs.

Apart from rapid prototyping, an important advantage of
GPP-based SDR architecture like GNU Radio is the possibility
to use the same code for simulations as well as experiments.
Since signal processing is implemented on the PC, we can
either loop back the samples from the transmitter into the
receiver to perform simulations or connect SDRs for over-
the-air experiments. In this paper, we use this feature
and evaluate both transceivers by means of simulations
over an AWGN channel and real transmissions in an office
environment.

5 CASE STUDY 1: BATS TRANSCEIVER

The first use-case of our algorithm is the BATS transceiver,
a custom ultra low-power transceiver, that we developed
to track mouse-eared bats (Myotis myotis) in their natural
habitat [4].1 With a weight of about 20 g, these bats can
only be equipped with sensor motes of up to 2 g. In our
project, we used this weight budget for a 1 g mote that
is powered by a 1 g battery. This weight constraint has
distinct impact on wireless communications and is asking
for a custom application-specific design. The main limitation
of out platform is that the battery does not supply enough
current to drive the wireless transceiver directly. Instead, we
have to use the battery to charge a capacitor, which is then
used to power the transceiver and send short bursts of data.
More details and rationale on the design and implementation
of this ultra low-power transceiver are available in prior
work [4], [31].

In the context of this paper, the important aspect is that
the maximum frame size is limited by the energy stored
in the capacitor. Furthermore, we are restricted to simple
modulation and coding schemes to keep the sensor mote

1. http://www.for-bats.de/

complexity at a minimum. To assess the performance of this
application-specific physical layer, we developed SDR-based
prototypes that we used for simulations and experiments in
realistic environments [32].

5.1 Physical Layer Performance

Using differential BPSK, the energy in the capacitor is just
enough to send 12 byte frames at a data rate of 200 kbit/s.
Without mSync, a frame comprises a 2 byte preamble, a
1 byte SFD, and a 2 byte Cyclic Redundancy Check (CRC),
leaving 7 byte for the payload. Given the short frames size,
we stick to error detection using the CRC, but do not employ
forward error correction. The SDR implementation uses
Ω = 5 samples per symbol, which corresponds to a sample
rate of 1 Msps. The other parameters of the M&M algorithm
were set to the default values used in GNU Radio version
3.7. Finally, we use a moving average over the duration of
five bits to normalize the signal to an average power of one,
before feeding it to the clock recovery algorithm.

When conducting simulations using the GNU Radio
implementation of our new algorithm, the first observation
is that it works in the first place. This serves as a proof-
of-concept for mSync, but, of course, we wanted to go
further and provide a quantitative analysis of the impact on
physical layer performance. For this, we conduct simulations
where we send frames with a pseudo-random payload over
an AWGN channel and measure the frame error rate. In
corresponding runs, i.e., with and without our algorithm, we
use the same channel coefficients and payloads. Furthermore,
we set the noise to an average power of one and adapt
the amplitude of the signal to reach the desired SNR. The
resulting frame delivery ratio at different SNR levels is
depicted in Figure 6a. The error bars in this and the
following plots depict the 95 % confidence intervals. For
better readability, we alter between plotting the confidence
intervals for the configuration with normal frames and the
configuration with mSync.

The results show that we start receiving frames at around
0 dB and reach 100 % at about 7 dB. More interestingly,
the graph shows that the two modes behave exactly the
same, which is a very positive result. It shows that the
improved energy consumption of mSync (through shorter
frames without preamble symbols) does not have to be traded
for physical layer performance. This is the best possible
outcome, since the goal was not to improve the frame error

http://www.for-bats.de/
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(a) Simulations over an AWGN channel.
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(b) Experiments in an office environment.

Figure 6. Observed packet delivery ratio of the BATS PHY in simulations and measurements.

rate, but to benefit from shorter frames without degrading
physical layer performance.

To rule out potential simplifying assumptions in our
simulations, we set up real over-the-air measurements. With
GNU Radio, switching between simulations and real exper-
iments is straightforward. The possibility to use the same
code in simulations and measurements is a big advantage, as
it allows us to directly compare the results. Figure 5 shows
our measurement setup. In this and the following exper-
iments, we do not employ any unrealistic simplifications
(like using a common clock source for sender and receiver).
The oscillators in sender and receiver run completely in-
dependently, leading to typical hardware impairments like
frequency offsets and sampling clock offsets. We use two
B210 SDRs from Ettus Research, which we configured to
send in the 868 MHz band. While we cannot strictly rule
out interference, we chose a frequency that seemed to be
vacant in our lab. To set different SNR levels, we kept the
receive gain constant and varied the output power of the
transmitter. Since the B210 is no calibrated measurement
device, this method allows us to change the relative SNR, but
not to configure an absolute level. Like in the simulations,
we use 5 samples per symbol, resulting in a sample rate of
1 Msps.

The results of the experiment are depicted in Figure 6b,
where we plot the frame deliver ratio at different SNRs. For
better comparison, we shifted the relative SNR on the x-
axis to values corresponding to our simulations. The graph
shows that the experiments are in perfect compliance with
our simulations. Again, mSync and normal operation do not
show any differences, highlighting that our approach does
not degrade the frame error rate. The graph shows two slight
dips in the curve, which can be explain by nonlinearities of
the amplifiers. This is in accordance with the datasheet of
the Analog Devices AD9361 transceiver used with the B210.

5.2 Energy Savings
For our custom BATS transceiver, mSync allows us to shorten
the frame by 17 % (through saving the 2 byte preamble of
the 12 byte frame). This improvement is visualized at the
top of Figure 7, where we plot the frame size of mSync
relative to a normal frame. In our particular case, the
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Figure 7. Comparison of the relative frame size/the relative energy
consumption between normal frames and mSync. For IEEE 802.15.4,
the graph shows 30 byte packets, as used in our simulations and
measurements.

shorter frames translate directly into energy savings in the
transmitter, as the sensor mote’s main task is to send periodic
beacons to the ground network. Apart from this specific
case, also other communication modules could benefit from
mSync, especially when the analog radio front end (in
particular the power amplifiers) are responsible for a large
part of the energy consumption. For the receiver, the energy
consumption is not straightforward to quantify, since the
algorithm introduces a slight computational overhead and
requires to buffer samples corresponding to the maximum
frame size. A detailed comparative study between an SDR
implementation of a normal receiver and mSync is, therefore,
presented separately in Section 8.

While optimized energy consumption per frame is al-
ready a good argument for our algorithm, wildlife monitor-
ing is a prime application also for other reasons. WSNs for
wildlife monitoring are usually heterogeneous with energy-
constraint mobile nodes on the animals that send data to
more capable stationary nodes. These stationary nodes are
typically SDR-based, implementing a custom and application-
specific physical layer. In such scenarios, our algorithm is
straightforward to apply: SDRs are easy to extend with
the required functionality and the mobile nodes rely on a
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Figure 8. Structure of an IEEE 802.15.4 frame. The payload size can be
up to 125 byte.

custom design either way. With these modifications, the
more capable stationary node can use the slightly more
complex algorithm, while the mobile node can benefit from
considerable improvements in terms of energy consumption.

6 CASE STUDY 2: IEEE 802.15.4 TRANSCEIVER

Motivated by the promising results of the BATS transceiver,
we were curious to apply the concept also to more complex
transceivers. We chose the IEEE 802.15.4 O-QPSK physical
layer for the 2.4 GHz band, which forms the base of the Zig-
Bee stack. This physical layer is designed to provide energy
efficient communication for WSNs and IoT applications and
could, therefore, greatly benefit from the energy savings
provided by our approach.

6.1 Physical Layer Performance
Fortunately, there is already an Open Source implementation
of IEEE 802.15.4 available for GNU Radio. This implementa-
tion was started by Thomas Schmid [33] and later overhauled
by us in [34].2 Based on O-QPSK, the IEEE 802.15.4 physical
layer is slightly more complex. To encode the data, the
transmitter maps each group of 4 bit to one of 16 pseudo-
noise chip sequences. These 32 bit chip sequences are then
O-QPSK modulated to create a signal with a chip rate of
2 Mcps. In the SDR transceiver, we process the signal with a
sample rate of 4 Msps.

The IEEE 802.15.4 GNU Radio module already uses the
M&M algorithm. Integration of our algorithm into the
receiver is, therefore, straightforward. As shown in Figure 4,
we merely have to replace the M&M block with our modified
version. All parameters and the other components of the
receiver are left unchanged. The frame format of a normal
IEEE 802.15.4 frame is shown in Figure 8. Each frame consists
of a 4 byte preamble, 4 byte physical layer overhead (for SFD,
a header, and the CRC), and the data payload of up to
125 byte. Using our algorithm allows us to save 4 byte of all
frames, independent from the their total size. For an ACK
with a total length of 11 byte, this corresponds to 36 %. But
even for a full-sized frame with a total length of 133 byte, the
improvement is still 3 %.

Similar to the previous use-case, we start our evaluations
with simulations over an AWGN channel. We send 30 byte
frames with a pseudo random payload and record the frame
delivery ratio. The relative improvement of mSync for a
30 byte frame is depicted in Figure 7. With mSync, we can
reduce the air time by 11 % from 1.15 ms to 1.02 ms, while
transmitting the same data. The results of the simulations
are depicted in Figure 9a, where we plot the frame delivery

2. https://www.wime-project.net/

ratio for different SNRs. As in previous figures, the error bars
indicate the 95 % confidence intervals. Like with the BATS
transceiver, the main observation is that the modes behave
exactly the same. That means that also with this transceiver,
we can benefit from mSync without degrading physical layer
performance.

Again, we wanted to back up our results with real experi-
ments and conducted measurements in an office environment.
We used the same B210 SDRs, this time transmitting in the
2.4 GHz band. Since this band is very crowded, we chose
a channel at the upper end, as there are no WiFi networks
allowed in our region. Using this part of the spectrum, we
were able to avoid most interference sources and had stable
experimental conditions. Given the previously discussed
limitations of the B210, we plot the relative SNR and align
the x-axis for better comparability with the simulation results.
The resulting graph is shown in Figure 9b. Also in this
experiment, the results match very well with simulations,
proving that mSync is feasible in practice and that we can
benefit without any drawbacks in terms of physical layer
performance.

6.2 Impact on MAC Layer Goodput

While optimizing the energy consumption was the main
motivation to introduce mSync, shorter frames also reduce
occupancy of the wireless channel, potentially improving
network goodput. For our BATS transceiver, this aspect is not
of prime interest, as infrequent transmissions lead to low net-
work utilization. For IEEE 802.15.4, in contrast, the maximum
achievable goodput can be a relevant aspect. Quantifying the
impact of shorter frames is, however, not straightforward,
as the relationship between the overhead per frame and
network goodput is non-trivial. The complexity stems from
the slotted operation of the channel access algorithm and the
fact that we use the channel more efficiently once we access
it.

To study the possible improvements of our algorithm, we
employ the Markov model presented in [35]. This model
considers the stationary throughput of a saturated IEEE
802.15.4 network. While the standard defines several network
topologies and modes of operation, we focus on a typical
network, consisting of a Personal Area Network (PAN)
coordinator that orchestrates nodes in a star topology. In
such networks, the coordinator establishes a superframe cycle
that is used to subdivide time into a Contention-Free Period
(CFP) and a Contention Access Period (CAP). The channel
access during the CAP uses slotted Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) with a slot
length of aUnitBackoffPeriod that has a duration of 20 symbols.
For the sake of brevity, we only consider the CAP and
unacknowledged transmissions in our scenario. The model
is, however, straightforward to extend to acknowledged
transmissions and unsaturated conditions, as shown in [35].
Furthermore, the battery life extension mode, which allows
reducing the size of the initial backoff window, is considered
to be disabled.

Similar to Wireless LAN (WLAN), IEEE 802.15.4 uses
an exponentially increasing backoff algorithm for channel
access. The backoff windows starts at 2macMinBE slots, which
are doubled in each round until it reaches a maximum size

https://www.wime-project.net/
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(a) Simulations over an AWGN channel.
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(b) Experiments in an office environment.

Figure 9. Observed packet delivery ratio of the IEEE 802.15.4 PHY in simulations and measurements.
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Figure 10. Normalized saturation goodput for our approach and normal
frames for typical network sizes and an increasing payload length.

of 2macMaxBE slots. Frame transmission fails, if the MAC went
through macMaxCSMABackoff rounds without finding the
channel idle when trying to send. In that case, the frame is
dropped, while the algorithm restarts with the next frame in
the queue. The most important MAC layer parameters are
also summarized in Table 1. All parameters correspond to
their default values given in the standard [13].

The Markov model that we use to calculate the saturation
goodput is much inspired by Bianchi’s seminal work on the
Distributed Coordination Function (DCF) of IEEE 802.11 [36].
Compared to WLAN, the main difference is that sensor
nodes enter a power saving state during their backoff periods
and, therefore, do not recognize if the channel turns busy
while they are waiting. After the backoff, nodes sense the

Table 1
Most relevant MAC layer parameters.

Parameter Value

aUnitBackoffPeriod 20 Symbols
macMinBE 3
macMaxBE 5
macMaxCSMABackoff 4

channel twice in two consecutive slots and transmit only if
the channel is sensed idle in both slots. To incorporate this
mechanism in the Markov model, Bianchi’s key assumption
of constant and independent collision probabilities had to be
adapted to a constant and independent probability φ that a
node starts sensing the channel in a randomly selected slot.
At that first channel assessment, the node senses the channel
busy with a probability α. If the channel is free, the node
continues with the second channel assessment during which
it senses the channel busy with a probability β.

The detailed derivation of α, β, and φ is available in [35].
In our context, the most interesting result from the paper,
is the normalized saturation throughput S that defines the
fraction of time slots spent to transmit non-colliding frames
that contribute to the throughput of the network. It is
calculated as

S = LNφ(1− φ)N−1(1− α)(1− β) , (5)

where N represents the number of nodes in the network and
L the length of a frame in time slots. Rounding the size of a
frame to a complete backoff slot, we use the payload size P
and the overhead O of a frame to calculate its length as

L =

⌈
(P +O)RS

aUnitBackoffPeriod

⌉
. (6)

Both P and O are given in byte and are converted to
symbols with a rate of RS = 2 symbols per byte. As payload,
we consider the data in the MAC layer, denoted as Payload
in Figure 8, i.e., the MAC frame excluding the CRC. At this
point, it is important to differentiate between throughput and
goodput to understand the advantage of our approach. By
omitting the preamble, we reduce the overhead from 8 byte
per frame (4 byte preamble, 1 byte SFD, 1 byte length field,
2 byte CRC), to 4 byte. If this difference allows us to save
a slot, we use the channel more efficiently as the average
goodput per slot G is increased. We calculate G as

G =
PRs

aUnitBackoffPeriod
· 1

L
. (7)

Scaling the normalized throughput S with the efficiency
of the channel access G, we calculate the normalized goodput
for all payload sizes of up to 125 byte. The results for
networks of 5, 10, and 15 nodes are depicted in Figure 10. In
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Figure 11. Relative goodput improvement of our approach over normal
frames for typical network sizes and an increasing payload length.

accordance with [35], we can see that the goodput decreases
with the number of nodes as well as with smaller frame
sizes. Most importantly, however, we can see that our
approach performs better or at least equally good, with a
rather constant difference to normal frames.

The regular zigzag pattern stems from the slotted oper-
ation of the MAC layer, which uses slots with a duration
corresponding to 10 byte. Since a frame blocks the channel
always for full slots, and since we save 4 byte from the
preamble, we benefit only in 4 of 10 cases.

To quantify the gain, we provide another view on the
data in Figure 11, where we plot the relative improvement
over normal IEEE 802.15.4 frames. The graph shows that, es-
pecially for smaller payload sizes, the gain is significant with
increases of over 20 %. Even for large frames an improvement
of about 5 % can be achieved. Furthermore, we can see a
higher improvement for larger networks, which, however,
stems from their lower network goodput as opposed to
higher absolute gains.

To summarize, these analytical evaluations highlight that
our approach, which was initially motivated by optimizing
the energy consumption of sensor motes, can also provide
considerable improvements in terms of network goodput.

7 MINIMIZING SIGNAL BUFFERING

We are aware that the need to buffer samples in the receiver
is the main drawback of our approach. With the presented
version of mSync, the amount of data that has to be buffered
would grow linearly with the signal bandwidth and the
maximum frame size. This could easily render our approach
unfeasible in practice, especially when implementing it on
an integrated platform.

To address this issue, we introduce mSync++, a straight-
forward extension of our algorithm. It is motivated by the
observation that the main problem with long frames is that
the receiver has to buffer the whole frame, even though
it is likely synchronized already after a few data symbols.
In Section 3.2, we have seen that even with more stable
and slower converging configurations, the synchronization
algorithm locks after a few byte. Therefore, with mSync++,
we do not put the SFD at the very end of the frame, but place
it latest after a fixed number of byte k. The resulting frame

Data
dk ... d1

(1)
(2)

SFD
sm ... s1

Data
dn ... d1

SFD
sm ... s1

Data
dk+1 ... dn

mSync

mSync++

Figure 12. Comparison of a normal mSync frame (top) and an optimized
version that requires less buffering in the receiver (bottom). With the
optimized version, the SFD is inserted after a fixed number of byte k. The
resulting frame is first decoded in backwards direction (1) and then like a
normal frame in forward direction (2).

format is depicted in Figure 12. To decode the frame, we
start like with normal mSync. We use the data to synchronize
and search for the SFD. Once found, we store the state of the
receiver, and traverse the signal in reverse direction, while
decoding the data. The difference is that we only have to
go backwards for k byte. After that, we restore the state
of the receiver to the state when we detected the SFD and
continue in forward direction. The frame is designed so that
the decoded bits match with a normal frame, allowing us to
leave the rest of the receiver unchanged.

Since k is a fixed system parameter, the number of sam-
ples that are stored locally do not depend on the maximum
frame size, allowing the algorithm to scale. To optimize the
receiver, k could be used to balance the trade-off between the
amount of data that has to be buffered and the probability
that the receiver is synchronized at the SFD. In other
words, it balances the performance of the receiver against its
complexity. With lower k, the SFD is placed earlier in the
frame, decreasing the data that has to be buffered. However,
lowering k also gives the receiver less time to lock the signal,
potentially degrading performance.

To demonstrate the practical feasibility of the approach,
we also implement it on SDR. As discussed earlier, the
platform of our BATS transceiver supports only short frame
sizes and, therefore, does not face the problem that mSync++
solves. For that reason, we decided to implement our
improved algorithm for the IEEE 802.15.4 transceiver, where
we can significantly reduce the amount of buffered data.
Apart from that, IEEE 802.15.4 is the more complex physical
layer, highlighting the general applicability of the idea.

In our proof-of-concept implementation, we varied k to
the number of samples corresponding to 1 byte, 3 byte and
5 byte. Even with the largest k, we are able to reduce the
amount of buffered samples by over 96 % for a full sized
frame (from 129 byte to 5 byte). However, the important
aspect is that the buffered data is constant and independent
from the maximum frame size. This makes mSync++ an
interesting option also for other physical layers that support
larger frame sizes.

We start our evaluation with simulations over an AWGN
channel. To ease comparison, we use 30 byte frames with
pseudo-random payload, like in prior experiments. The
resulting packet delivery ratio for different SNR levels is
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(a) Simulations over an AWGN channel.
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(b) Experiments in an office environment.

Figure 13. Observed packet delivery ratio of the IEEE 802.15.4 PHY in simulations and measurements.

depicted in Figure 13a. For the sake of readability, we
did not plot the confidence intervals as the lines are very
close. The figure is, however, based on the same number of
measurements as the previous plots and showed a similar
confidence level. The results indicate that already low values
for k (i.e., k = 3 and k = 5) provide very similar performance
as the normal receiver, which means we can benefit from
shorter frames of mSync++ without suffering from frame
loss. Furthermore, the plot shows that a k of only 3 was
large enough to have the receiver synchronized with a high
probability. Otherwise, some SFDs would have been missed,
leading to worse performance compared to normal frames.

To validate the simulations and to rule out any unrealistic
simplifications, we also conducted real over-the-air measure-
ments. We ran the same configuration with B210 SDRs in
an office environment and varied the transmit gain to set
different SNR levels. Using this method, we only know
the relative change of the SNR, but not the absolute level.
In Figure 13b, we shifted the x-axis to a similar level as in the
simulations to ease comparison of the results. Overall, we
see that mSync++ offers very similar performance as normal
frames, proving the practical feasibility of our approach.

8 COMPUTATIONAL COMPLEXITY

We have already looked into most aspects of mSync. In
particular, we showed through simulations and experiments
that it allows us to reduce the frame size without degrading
physical layer performance. For the transmitter, this directly
results in energy savings since we are able to send shorter
frames without introducing additional complexity. Therefore,
mSync allows to trade-off energy consumption at the trans-
mitter against a more complex receiver. In the following, we
try to quantify this complexity.

For that reason, we compare mSync and mSync++ with a
baseline transceiver that employs blind estimation for symbol
timing recovery and performs frame detection through
correlating with the SFD in subsequent stages. Such receiver
was, for example, used for the SDR-based ground nodes of
the BATS project and the GNU Radio IEEE 802.15.4 physical
layer. When evaluating the complexity, an important insight
is that mSync does not introduce a new signal processing
algorithm, but merely changes the input that is fed to the

normal algorithm. Thus, the computational overhead of
mSync is twofold: First, we have to save and restore the
internal state of the algorithm when switching directions
(with mSync++, the algorithm has to restore its internal state
before it can continue in forward direction). We believe that
this overhead is negligible since it comprises only saving
and restoring of a few floating point numbers. Second,
parts of the sample stream have to be processed twice by
the synchronization algorithm. For mSync, the number of
samples depends on the frame size, while for mSync++ the
number of samples depends on the placement of the SFD,
i.e., the parameter k.

To present exemplary results, we prepared a sample
stream with 30 byte IEEE 802.15.4 frames, as used in the
previous experiments. We used a sample rate of 4 Msps and
an inter-frame space of 100 ms, corresponding to ten frames
per second. The SNR was set to 30 dB to make sure that all
frames are received, i.e., that all frames go through the whole
decoding process. For mSync++, we used k = 5, i.e., placed
the SFD after 5 byte.

The resulting sample stream was loaded into memory
and piped into the SDR receiver with its real-time sample rate
of 4 Msps. Using GNU Radio’s performance counters [37],
we monitored the CPU time of each block when running
the receiver on an Intel i7-7560U processor. To do this, we
developed a custom application that connects to the running
flow graph, resets all performance counters, waits for 60 s,
and writes CPU times of all block into a file. With this
approach, we can perform precise measurements, which are
not impacted by the start-up time of the flow graph.

The results of these measurements are depicted in Fig-
ure 14, where we plot the CPU time of individual receiver
components during the 60 s measurement period. The Demod-
ulator, Filter, and Subtract components are for demodulation
and normalization of the signal level before feeding it to the
synchronization algorithm. These three components are not
affected by mSync and, therefore, show very similar CPU
times in all modes.

The most interesting component is the synchronization
algorithm, which we labeled Sync in the figure. Already
in the normal configuration, it is the most demanding
component. When switching to mSync, we have to process
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Figure 14. Computational complexity of the IEEE 802.15.4 transceiver
running in different modes.

the 30 byte frame twice, which increases the overall CPU
time from 17.8 s to 21.1 s. With mSync++, the part that has
to be processed twice is reduced to 5 byte, leading to a CPU
time of 20.4 s.

Another difference between both mSync variants and
the normal receiver is that searching for the SFD becomes
part of the synchronization algorithm. Normally, the Decoder
component processes the continuous bit stream that is output
by the synchronization algorithm. In this stream, it searches
for the SFD and, once found, decodes the data by demapping
the spreading sequences of the IEEE 802.15.4 physical layer
to the data bits. With mSync, searching for the SFD becomes
part of the synchronization algorithm, since it has to know
when to switch directions. That means that the increased
CPU times of the mSync variants also stem from the fact
that this functionality is shifted from the decoder to the
synchronization algorithm. In fact, when using mSync or
mSync++, the CPU times of the decoder drop from 1.5 s to
below 60 ms, making the values hardly visible in Figure 14.

Overall, these measurements underline the practical
feasibility of our approach. While the absolute values
might vary depending on the platform, our experiment show
that the computational overhead of the mSync variants is
manageable.

9 CONCLUSION

We presented a novel physical layer frame format and a
corresponding decoding strategy for single carrier wireless
communication systems, as often used in Wireless Sensor
Networks (WSNs), Cyber-Physical Systems (CPSs), Internet
of Things (IoT) devices, and industrial automation systems.
Our approach works without dedicated preamble symbols,
which results in shorter frames with less physical layer
overhead, saving energy and decreasing occupancy of the
wireless channel. To assess the performance of our approach
and to prove its feasibility, we incorporated it in two different
Software Defined Radio (SDR)-based prototypes: a custom Bi-
nary Phase Shift Keying (BPSK) ultra low-power transceiver
and the Offset Quadrature Phase-Shift Keying (O-QPSK)
physical layer of the IEEE 802.15.4 standard. Both simulations
and over-the-air measurements showed that omitting the
preamble did not degrade physical layer performance. On

the contrary, through analytical evaluations, we were able
to show that the shorter frames can improve the goodput of
networks considerably.

Finally, we addressed the drawback of our algorithm, i.e.,
the need to buffer samples in the receiver. With a simple
variation of the algorithm, we can reduce the buffered data
to a small constant number of samples, which makes our
approach applicable to physical layers independent from
their maximum frame size. We believe that the algorithm
occupies a sweet spot between performance and computa-
tional complexity, making it an attractive option for a broad
range of single carrier communication systems.
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