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ABSTRACT
With the ever-increasing performance of smartphones and tablets,
they become viable platforms for applications that were, in the past,
only possible on desktops or laptops. In this paper, we study their
applicability for real-time stream-data processing, which is partic-
ularly interesting for Software Defined Radio (SDR) applications,
enabling wireless measurement and experimentation campaigns on
mobile platforms. To this end, we port GNU Radio, a state-of-the-
art, open source, real-time stream-data processing framework, to
Android and evaluate its performance. We show that it is possible to
fully benefit from available accelerators, i.e., Single Instruction Mul-
tiple Data (SIMD) and the Graphics Processing Unit (GPU), which
provide considerable speedups and allow for efficient implementa-
tions. As a general-purpose real-time data processing framework,
GNU Radio can provide the base for a wide range of applications.
To demonstrate its flexibility, we provide example applications that
implement FM and Wireless LAN (WLAN). Our toolchain is pub-
lished as open source software, thus serving as an enabler for highly
mobile SDR applications.
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1 INTRODUCTION
With the ever-increasing performance of mobile devices, like smart-
phones and tablets, they become powerful general-purpose com-
pute platforms, featuring capable processor and GPUs. Today, smart-
phones support applications that go far beyond their initial use-
cases, like browsing, emails, texting, or calls. In this paper, we
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explore their applicability for real-time stream-data processing,
in particular, real-time signal processing for SDR applications.1
To this end, we port GNU Radio [14], a state-of-the-art, real-time
stream-data processing framework, to Android and evaluate its per-
formance. Our port supports the two main architectures, ARMv7-A
(armeabi-v7a, 32 bit) and ARMv8-A (arm64-v8a, 64 bit) and is inte-
grated in Android to create full-featured SDR applications that can
interface USB-based hardware frontends without the need to root
the device. While Android applications are mostly implemented in
Java, all data processing happens in C++ domain, driven by GNU
Radio’s heavily parallelized runtime environment. Our port takes
full advantage of the available accelerators, i.e., SIMD instructions
and the GPU, enabling efficient high-performance applications.

GNU Radio comes with a comprehensive library of optimized,
state-of-the-art signal processing algorithms and can be further
extended through third-party modules, many of which implement
specific technologies, like WLAN, ZigBee, or LoRa. Porting the
framework, therefore, does not enable a specific application but
provides the base for a wide range real-time stream-data processing
systems. Prime applications for our port are wireless measurement
and experimentation campaigns. Here, smartphones provide dis-
tinct advantages: (1) They are portable, standalone platforms with
significant compute power that will continue to improve in the
future. (2) They are relatively cheap, considering their features and
capabilities (e.g., CPU, GPU, storage, display, multi-touch input,
GPS, audio, sensors, and camera). With these properties, they are
well suited for field-testing novel technologies, like IEEE 802.11p, a
WLAN variant for use in vehicle-to-everything communications,
including vulnerable road user, like pedestrians or cyclists. In the
medium-term, smartphones could even become standalone SDR
platforms without requiring additional hardware. Schulz et al. [17]
showed that it is possible to modify the firmware of WLAN chips
from Broadcom (as used, for example, in the Nexus 5 smartphone) to
transmit arbitrary waveforms. While these experiments are, at the
moment, limited to transmitting pre-loaded baseband samples, a bet-
ter understanding of the Direct Memory Access (DMA) controller
might allow streaming samples to the device, enabling SDR-like
capabilities with integrated hardware.

While GNU Radio includes many processing blocks that are
targeted towards signal processing, it is in no way limited to this
particular use-case. Its runtime environment is a general-purpose
stream-data processing framework that can be used for audio, video,
or sensor data processing. This can support, for example, augmented
reality or virtual reality applications. Overall, the contributions can
be summarized as follows:

1Note that we use the term real-time as it is used in the signal processing context. It
implies that the data can be processed live while the system is running. It does not
imply latency or deadline guarantees.
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• We present a state-of-the-art, stream-data processing frame-
work for Android that supports the two most common ar-
chitectures (ARMv7-A and ARMv8-A) and make it available
as open source software.2

• We provide a performance evaluation of the GNU Radio
runtime environment on Android, showing that both the
ARM platform and the Android operating system are well
suited for real-time data processing.

• We show the potential of hardware acceleration through
SIMD instructions and data processing on the GPU.

2 RELATEDWORK
There has been a broad interest in implementing real-time signal
processing systems on embedded devices, in particular on ARM plat-
forms [5, 9, 10, 18]. The most relevant platforms in this context are
heterogeneous architectures that combine a CPU with accelerators,
like DSP co-processors, Field-Programmable Gate Arrays (FPGAs),
or GPUs. The main challenge is to integrate and exploit these accel-
erators, which can provide significant performance gains. Muniz
[10] studies the performance of GNU Radio on a Texas Instruments
TCI663x System on Chip (SoC), which includes co-processors for
common signal processing functions. They show that offloading
the computation of a Fast Fourier Transform (FFT) and decoding of
Turbo Codes to the DSP can provide speedups of over 100 (for the
FFT) and 40 (for the Turbo Decoder). Similarly, Fayez et al. [5] com-
pare the performance of a Finite Impulse Response (FIR) filter that
is computed on the CPU with a corresponding implementation on
the DSP of a Texas Instruments OMAP3530 processor. Depending
on the size of the input data, they measure speedups of up to 40.

Recently, FPGAs became more popular on embedded devices.
This is mainly driven by Xilinx’s Zynq series of devices, which com-
bine an ARM processor with an FPGA on one chip. Marlow et al.
[9], for example, present a framework to integrate Zynq FPGA ac-
celerators into GNU Radio. A similar concept is used by RFNoC [4],
a framework from Ettus Research that eases the use of FPGAs on
recent SDRs, including their embedded series, which is also based
on Xilinx Zynq processors. Like our paper, these works do not focus
on specific applications but provide frameworks that serve as the
base for actual applications.

Modern processor support SIMD instructions that operate on
vectors of data in similar execution times than scalar operations. Ide-
ally, these instructions would not require any explicit support from
the application, as the compiler would use them whenever appropri-
ate. In reality, many opportunities are not recognized. GNU Radio,
therefore, uses the Vector-Optimized Library of Kernels (VOLK),
which provides optimized implementations for common signal pro-
cessing functions [15] that make explicit use of SIMD instructions.
The library was later extended for Neon, the SIMD instruction set
available on recent ARM platforms [18], which provided speedups
of up to ten. In this paper, we integrate VOLK into our GNU Radio
Android port and provide benchmarks for a smartphone.

Compared to SIMD instructions, GPUs provide an even higher
level of parallelism by executing kernels that perform similar oper-
ations on vectors or arrays of data. The most popular frameworks

2The toolchain and example applications are available at https://github.com/bastibl/
gnuradio-android.
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Figure 1: Library dependencies for GNU Radio. A → B indi-
cates that A depends on B.

for general purpose computations on GPUs are Nvidia’s Compute
Unified Device Architecture (CUDA) and the Open Computing Lan-
guage (OpenCL), which provides a vendor-independent standard.
Both have been studied heavily also in the context of SDR [1, 6, 7, 12].
An issue that has been identified is that data cannot be processed
directly by the GPU but has to be copied to GPU memory first.
While there are OpenCL implementations that support zero-copy
or shared virtual memory, these features require page aligned data
or specifically allocated buffers. At the moment, this is not possible
with GNU Radio. There is, however, ongoing work towards more
flexible buffers [7]. In this paper, we focus on gr-clenabled3 [12],
a recent GNU Radio extension module that uses OpenCL, integrate
it in our Android port and evaluate its performance.

We are not the first to study real-time signal processing on smart-
phones. Park et al. [11] presented IEEE 802.15.4 and IEEE 802.11p im-
plementations for Android to interoperate with Internet of Things
(IoT) devices. In contrast to our work, they demonstrate the feasi-
bility by implementing specific applications, whereas we provide
a general purpose, open source framework that can be used for
arbitrary applications. Using GNU Radio, we can benefit from an
ecosystem that provides third-party extensions that implement a
wide range of technologies. Furthermore, our port integrates in
Android and does not require rooting the device.

Our work is based on a GNU Radio Android port by Rondeau [13].
It provided a proof-of-concept, showing that it is possible to run
GNU Radio on Android and interface SDR frontends without the
need to root the device. This work also provided hardware drivers
for Android sensors, audio, and SDR frontends. We extend this
work, by updating it to GNU Radio v3.8, adding an automated build
system, adding support for recent ARM architectures, and adding
support for more SDR frontends. In addition, we contribute with
a performance evaluation of the GNU Radio runtime on Android,
full accelerator support (SIMD and GPU), and non-trivial example
applications that demonstrate the potential of our work.

3 GNU RADIO ON ANDROID
Android is, together with iOS, one of the major operating systems
for mobile devices, like tablets and smartphones. On Android, ap-
plications are mainly written in Java or Kotlin, with the option
to access shared libraries through the Java Native Interface (JNI).
GNU Radio itself is implemented in C++. To use it on Android,
we cross-compile the most recent version and all its direct and
3https://github.com/ghostop14/gr-clenabled

https://github.com/bastibl/gnuradio-android
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Figure 2: GNU Radio uses double-mapped circular buffers
for stream-data processing. We provide an Android imple-
mentation that uses Android Shared Memory.

indirect dependencies using the Android Native Development Kit
(NDK). Our toolchain supports the two most popular architectures,
ARMv7-A (armeabi-v7a, 32-bit) and ARMv8-A (arm64-v8a, 64-bit).
The dependency graph of the libraries is shown in Figure 1. Since
most libraries do not support native Android builds, we had to
modify their build framework and in some cases adapt the source
code. To ease the use of our toolchain, we release build scripts that
reference the modified libraries through submodules of the version
control system. This avoids issues with compatibility between li-
braries and manual patching. The output of the build scripts are
shared libraries that can be included in Android applications and
accessed through the JNI. Note that while GNU Radio and the An-
droid SDK require around 17 GByte on the development machine,
GNU Radio Android applications only require tens of MByte.

To fully integrate GNU Radio on Android, we adapted the log-
ging framework (which was changed from log4cpp to Android’s
native library) and the configuration subsystem (which considers
Android’s external storage). External storage, is a global directory
that is accessible to all applications with the corresponding permis-
sion. This way, we have one configuration that is used by all GNU
Radio applications. To access the phone’s sensors, speakers, and
the microphone within GNU Radio, we updated the existing GNU
Radio module4 that was developed as part of the earlier port.

Double-Mapped Circular Buffers
Efficient stream-data processing is at the core of GNU Radio. Its
runtime environment implements a producer–consumer pattern
with a ring buffer between subsequent processing blocks. Each
block is executed in a separate thread, allowing for parallelized
processing. The buffer is implemented as double-mapped circular
buffer. When allocating a buffer, we use the Memory Management
Unit (MMU) to map, not necessarily contiguous physical memory
twice, back-to-back in the virtual address space of the application.
An illustration is shown in Figure 2. In the example, the buffer
comprises two physical memory regions (A and B) that are mapped
into virtual memory following the pattern ABAB. Note that, as
indicated in the figure, the buffer is associated with the output port,
since there might be more than one downstream blocks that read
from the same buffer. The total usable buffer size corresponds to
the sum of the sizes of A and B. Since the MMU manages memory
4https://github.com/trondeau/gr-grand

through memory pages, the buffer size is always a multiple of the
page size. The advantage of this architecture is that operations on
the buffer can use contiguous memory, i.e., functions like memcpy
or filters do not have to deal with the case that the circular buffer
wraps around. This case is handled by the MMU, which simplifies
the implementation and allows us to use instructions that work on
vectors more efficiently.

GNU Radio comes with four implementations for double-mapped
circular buffers. Linux usually uses System V shared memory, which
is, however, not available on Android. The only compatible imple-
mentation uses a temporary file that is memory mapped into the
virtual address space. The drawback of this implementation are the
need to create temporary file and potential writes to disk that are
not under the control of the application. Android, however, intro-
duced Shared Memory (ashmem) with API level 26, which we used
to implement a double-mapped circular buffer. The implementation
was verified with the GNU Radio’s unit tests and is used by default
by our Android port.

Runtime Optimizations
On a normal Linux system, GNU Radio allows fine-tuning param-
eters to optimize performance, many of which are not supported
by Android. For example, the CPU affinity of the threads cannot
be controlled individually, i.e., we cannot assign processing blocks
to specific CPU cores. Another limitation is that Android applica-
tions cannot spawn threads with real-time priority. On Linux, these
threads are handled by dedicated task schedulers (e.g., sched_rr or
sched_fifo), which can improve performance [2]. On Android, all
threads are served by the Completely Fair Scheduler (CFS), which
allows adjusting the nice value to assign more CPU time to threads
with higher priority. By default, Android prioritizes threads that
are relevant to the user experience, i.e., rendering and audio. In
our case, we prioritize data processing and, therefore, assign the
smallest nice value, corresponding to the highest priority, to all
GNU Radio threads.

Apart from standard Linux process configurations, there are also
Android-specific optimizations. Most Android systems feature a
Game Mode, which further prioritizes the application running in
the foreground. While there is no standard implementation, this
mode usually allocates more CPU time and suspends background
applications to disk to free memory. Further optimizations, like
prioritizing network traffic or disabling secondary SIM cards are
also typical but less relevant in this context.

Interfacing Hardware
USB-based SDRs like the RTL-SDR dongle, the HackRF, or the Ettus
Research B200 series are interesting hardware frontends for small
portable setups. Using USB On-The-Go (OTG), the smartphone
can power and interface the SDR without any additional hardware.
The drivers for these devices are based on libusb. On Linux, they
interact directly with USB device nodes that are usually mounted
under /dev/bus/usb or /sys/bus/usb. While Android is based on
Linux, it implements a stricter security model than typical desktop
distributions. This model prevents direct access to the device nodes,
which is why Park et al. [11] use a rooted phone to circumvent the
problem.

https://github.com/trondeau/gr-grand
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Figure 3: GNU Radio provides four interfaces to communi-
cate between Java and C++ domains.

We use an alternate approach and integrate the driver into An-
droid’s security model. To this end, the application requests a file
descriptor for the device from Android’s UsbManager and forwards
it to the driver. We, therefore, need to adapt the driver to accept a
file descriptor and libusb to use this descriptor instead the device
nodes. For libusb there is a modified version available5, which we
used in our toolchain. Furthermore, we added support for three
popular SDRs frontends: the RTL-SDR, the HackRF and the Ettus
Research B200 series. While the RTL-SDR and HackRF are USB 2.0
devices, the B200 series also supports USB 3.0, which is available
on more recent smartphone SoCs, like the Snapdragon 855 series.

Connecting C++ and Java
With the discussed toolchain, we can setup and run GNU Radio ap-
plications using the JNI and process all data in C++ domain. While
this is great in terms of performance, it requires methods to interact
with the flowgraph from Java, for example, to set parameters or vi-
sualize the signal. GNU Radio comes with a wide range of interfaces
(cf. Figure 3). The most flexible option is ControlPort [16], which
exposes a Remote Procedure Call (RPC) interface to the flowgraph
and individual processing blocks. The interface is based on Apache
Thrift, an RPC protocol that GNU Radio uses on top of TCP/IP,
allowing us to interface a running flowgraph via network sockets.
An alternate method is to use GNU Radio’s asynchronous message
passing interface, which allows thread-safe message injection from
code outside the flowgraph. This interface is, however, limited to
posting messages, i.e., it is not possible to subscribe to updates or
read parameters.

A limitation of both ControlPort and asynchronous messages
is that the interfaces cannot be used to stream data into or out
of the flowgraph. This can be achieved with TCP/UDP sockets
or ZeroMQ, a higher-layer networking library with support for
messaging patterns like request-reply or pub-sub.

4 RUNTIME PERFORMANCE
Having a full port of GNU Radio, we were interested in assessing
the performance of SDR applications on smartphones. In particular,
we were curious if Android interferes with CPU intensive, multi-
threaded applications like GNU Radio, which spawns a thread for
each processing block in the flowgraph. To this end, we benchmark
5https://github.com/videgro/libusb.git
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Figure 4: Flowgraph topology, used to evaluate runtime per-
formance of GNU Radio.

the GNU Radio runtime similar to a previous study that focused
on the performance on desktop PCs [2]. We create a flowgraph
with a structure as shown in Figure 4, that allows us to change the
number of pipes (i.e., parallel streams) and stages (i.e., blocks per
stream) programmatically. Since we focus on the performance of
the runtime environment, as opposed to the performance of indi-
vidual blocks, we just copy data through the flowgraph without any
additional processing. To minimize the impact of the measurement
on the result, we pipe a given amount of data into the flowgraph
and measure the execution time, i.e., the time it takes to propagate
the data through the flowgraph. This way, we do not have to instru-
ment the flowgraph, which would inevitably cause overhead and
potentially impact its runtime behavior. We, furthermore, create
and setup the whole flowgraph in advance to only measure the
time it takes to propagate the data.

The following benchmarks are conducted with a OnePlus 5T
smartphone, featuring an octa-core Qualcomm Snapdragon 835
processor with an Adreno 540 GPU, which was released in the first
quarter of 2017. The phone runs Android 9 (API level 28). It was
fully charged before the measurement and remained connected to
the PC during the measurement. To ensure that the benchmark
application remains in the foreground, we configured the phone
to stay active (i.e., not go into standby mode) while connected via
cable. We, furthermore, put the phone in Flight Mode to minimize
interference from other system services. The GNU Radio library
and the Android application were compiled in release mode. We
set the nice value of the GNU Radio threads to highest priority,
exceeding the default priorities of rendering threads, and enable
Game Mode to prioritize the application over other system services.
Using this setup, we evaluate both the stream-data and the message
passing interface.

To evaluate stream-data performance, we use a Null Source and
a Head block to stream 200 × 106 32 bit floats into the flowgraph.
We scale the number of pipes and stages jointly, i.e., an x-value
of 25 corresponds to five pipes and five stages (cf. Figure 4). The
average execution time of ten runs per configuration are shown
in Figure 5. The error bars indicate the confidence interval of the
mean for a confidence level of 95 %. To put the performance of the
smartphone into context, we conducted similar measurements on a
laptop with an Intel i7-8565U that features eight CPUs (four cores
with hyperthreads), running Ubuntu 19.10 and the same GNU Radio
version as the phone.

The results show that the execution times of both the smart-
phone and the laptop scale about linearly, matching the amount
of data that has to be passed through memory. This is a positive

https://github.com/videgro/libusb.git
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Figure 6: Top 10 SIMD accelerated functions with highest
speedup compared to C implementations.

result, as it suggests that Android does not interfere with real-time
signal processing applications. Even the configuration with 100
threads runs without getting throttled by the operating system. Yet,
in comparison to the laptop, the execution time on the phone is
significantly higher with a factor of about five. Similar results were
observed in an analog experiment for the asynchronous message
passing interface of GNU Radio (data not shown).

While the performance of the smartphone is lower, it is far from
rendering the platform impractical for SDR, especially consider-
ing that we compare a top smartphone SoC from 2017 with a top
laptop CPU from 2018. Furthermore, the octa-core Snapdragon
does not feature eight similar CPUs like the laptop but uses ARM’s
big.LITTLE architecture, which combines four high-performance
cores with four energy-efficient slower cores. With the continuous
performance improvements of smartphones, we believe that more
and more SDR applications become feasible on mobile platforms.

5 SIMD ACCELERATION
ARMv7 introduced SIMD acceleration through the Neon instruc-
tion set extension and a corresponding co-processor. To exploit
SIMD instructions, GNU Radio relies on VOLK6, a library of com-
mon functions (called kernels) that can benefit from vectorized
instructions. Every kernel comes with a generic C implementation
and optional optimized versions that use, for example, assembly
instructions, compiler intrinsics, or lookup tables. VOLK chooses
the most efficient implementation during runtime based on profil-
ing data, generated with volk_profile, a tool that benchmarks all
implementations of a kernel that are supported by the platform.
To evaluate the potential of SIMD on a smartphone, we created
an Android version of volk_profile and adapted the library to read
the benchmarking results from Android’s external storage. We pro-
filed both the ARMv7-A and the ARMv8-A implementation, using
the default parameters, where each function processes a vector of
131 071 items 1987 times.

The results are shown in Figure 6, where we plot the speedup of
the Top 10 functions that provide the highest speedup relative to a
generic C implementation for ARMv8-A. VOLK differentiates be-
tween aligned and unaligned kernels. The former allows exploiting
more efficient instructions for aligned input data. We evaluated the
differences between these versions but found that only the com-
putation of the complex conjugate showed different performance
with a speedup of approximately two. Figure 6 shows the results for
aligned implementations. Note that VOLK functions follow the nam-
ing scheme <input data type> [number of inputs] function
name <output data type>. The data types encode the number of
bits and the type (i for integer, ic for a complex number consisting
of two integers, u for unsigned integer, f for floats, fc for a complex
number consisting of two floats). Most functions work on vectors of
data, however, some also accept scalar inputs (e.g., multiply sup-
ports multiplying a vector with a scalar). These scalars are prefixed
with an s.

For ARMv8-A, the speedup is up to eight, with many functions
providing a speedup between two and six. For ARMv7-A, we see
qualitatively similar results, albeit the functions that benefit most do
not match one-to-one between the architectures (data not shown).
VOLK includes 54 functions with optimized implementations for
both ARMv7-A and ARMv8-A. Overall, 51 and 36 out of these
functions show best performance for ARMv7-A and ARMv8-A,
respectively. This shows that VOLK is still relevant, as compilers do
not recognize all situations where SIMD instructions can be used.
Optimized implementations, using compiler intrinsics or assembly,
can, therefore, still provide significant performance benefits, as
even the compiler for the more recent architecture misses many
opportunities to optimize implementations.

6 GPU ACCELERATION
GPUs are another interesting option to accelerate stream-data pro-
cessing. While Android does not support OpenCL through native
APIs, the GPUs of most modern smartphones do and the corre-
sponding libraries are part of their system image. The Snapdragon
835 processor, for example, comes with an Adreno 540 GPU that
supports OpenCL 2.0 Full Profile. Using the GPU on Android is
6http://libvolk.org/

http://libvolk.org/
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Figure 7: OpenCL baseline benchmark for the average execu-
tion times of a NoOp and a Copy kernel for different buffer
sizes.

possible by linking against the OpenCL libraries of the chip vendor,
which also ties the application to the platform. This is unavoidable
given the lack of native OpenCL support on Android.

Whether a flowgraph can benefit from GPU acceleration, de-
pends on whether the potential processing gain of the GPU is
worth the overhead of launching OpenCL kernels and copying the
data back-and-forth. As earlier works already noticed, there is a
non-trivial relationship between the buffer size and the through-
put [1, 7, 12]. We, therefore, conduct baseline measurements similar
to Piscopo [12], where we measure the average executing time for
the NoOp and Copy kernels. The NoOp kernel copies data to GPU
memory and returns immediately, while the Copy kernel copies
the input to the output. Both kernels operate on 8 Byte complex
floating point numbers (two 4 Byte floats) and distribute the in-
put data according to the preferred work group size of the OpenCL
implementation. The results are shown in Figure 7. We repeated
all measurements 200 times, measuring 100 consecutive runs per
repetition to increase the precision, i.e., each data point in the graph
is based on 20 000 runs. To avoid profiling the initial overhead to
set up buffers, we do warm-up runs that are not taken into account.
The error bars indicate the confidence intervals of the mean for a
confidence level of 95 %.

There are two main insights, we can gain from the results: First,
we can assess whether a block could benefit from moving its com-
putation to the GPU. If its execution time on the CPU is faster than
the Copy kernel, it will not provide a benefit in terms of maximum
throughput. It might, nevertheless, make sense to offload the block
and free CPU resources. Second, we can see that both the NoOp
and the Copy kernel do not scale linearly with the buffer size. This
indicates that the overhead is not only the memory transfer (which
we would assume to scale approximately linear) but also the over-
head from distributing the work to GPU threads and launching the
OpenCL kernel. The impact of launching the kernel is, furthermore,
emphasized by the fact that the NoOp kernel (with a one-way data
transfer) is not twice as fast as the Copy kernel (with a two-way
data transfer).

To show the potential for typical signal processing blocks, we
provide exemplary results that compare the performance of GPU-
accelerated blocks with their corresponding GNU Radio blocks,
which use VOLK to select the most efficient SIMD implementation
for the platform. While GNU Radio allows us to define a maximum
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Figure 8: Throughputwhen computing themagnitude (Com-
plexToMag) and the argument (ComplexToArg) of a complex
number on the CPU and the GPU.

size for the ring buffers, the scheduler launches the block as soon
as input data is available. The actual input data of a block might be
much smaller, which would affect the measurement. We, therefore,
instrument the blocks function without launching a GNU Radio
flowgraph, always running it with the same buffer size. The results
are shown in Figure 8, where we plot the throughput of a block
that computes the magnitude (ComplexToMag) and the argument
(ComplexToArg) of a complex number. Computing the magnitude
on the GPU does not increase the throughput for any buffer size,
while computing the argument on the GPU provides similar or
better performance. For example, for a buffer size of 32 768 items,
the throughput can be increased by 94 %. Overall, this shows that it
is possible to use the GPU of a smartphone for real-time stream-data
processing. Similar experiments for other functions showed that
computations of the logarithm and trigonometric functions benefit
in particular. Even though we cannot exploit the full potential of
the GPU due to the current limitations of the GNU Radio runtime
(i.e., the lack of zero-copy and shared virtual memory), the GPU
can provide significant improvements, especially for large buffer
sizes.

7 EXAMPLE APPLICATIONS
GNU Radio aims to be a general purpose framework that provides
the base for real-time signal processing systems. The focus is not
on implementing specific technologies or standards but to provide
optimized, state-of-the-art implementations for common functions,
like filters or synchronization algorithms. There are, however, a
wide range of third-party GNU Radio extension modules available
on the Comprehensive GNURadio Archive Network7. To demonstrate
that it is easily possible to use the extensions, we integrated two
of them in our toolchain. They come with corresponding Android
applications that implement an FM receiver and an IEEE 802.11a/g/p
receiver [3]. Using these modules on Android does not require any
modifications, i.e., the developer does not have to maintain separate
versions.

Figure 9 shows an exemplary setup for the IEEE 802.11 receiver.
It shows the OnePlus 5T smartphone that uses a B200mini from
Ettus Research as SDR frontend. The smartphone is able to power
7https://www.cgran.org/
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Figure 9: GNU Radio Android application that decodes
WLAN frames with an Ettus Research B200mini.

the device, i.e., there is no external power required, providing a
very portable setup. Since the phone supports only USB 2.0, i.e.,
a maximum bandwidth of 8 MHz at full sample resolution, we re-
duced the bandwidth of the WLAN signal to 5 MHz. This mode is
supported by some commercial cards, such as the Atheros AR9582,
used in our TP-Link WDR3600 access point that is shown on the
left of Figure 9. To switch the card to 5 MHz channels, we used
OpenC2X [8], an open source prototyping platform for vehicular
communications.

The smartphone shows the equalized constellation points of the
Orthogonal Frequency Division Multiplexing (OFDM) signal, which
are polled from the flowgraph using GNU Radio’s ControlPort
interface. The frames are completely decoded and forwarded to
Java domain via a ZeroMQ socket. We send 200 Byte frames at a
rate of ten frames per second without any losses. This experiment
gives an idea about what is possible on smartphones even today.
It, furthermore, shows the capabilities of GNU Radio on Android,
demonstrating that non-trivial applications are possible.

8 CONCLUSION
We have presented and released a complete toolchain to build GNU
Radio and all its dependencies on Android, enabling SDR applica-
tions on mobile platforms. We have shown that it is possible to fully
integrate GNU Radio and access hardware like microphone, speak-
ers, or SDR frontends without rooting the device. To highlight that
Android does not interfere with real-time data processing, we have
conducted comprehensive experiments to measure the performance
of the GNU Radio runtime environment. Moreover, we have demon-
strated the ability to use available hardware accelerators (SIMD and
GPU offloading) and benchmarked their performance. Finally, we
have presented example applications to show the extensibility of
GNU Radio and demonstrate integration with controls and visual-
ization in the Android domain. We believe that this work can serve
as the base for a wide range of real-time stream data processing
applications, in particular highly mobile SDR implementations for
wireless measurement and experimentation.
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